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Abstract

We consider Markovian differentiated hiatuses queues with bulk entries. With the help of the matrix geometric method, we
discuss the stability condition for the existence of the steady-state solution of our model and we obtain the stationary system
size by using a probability generating function. The stochastic decomposition form of stationary system size and the waiting
time distribution of an arbitrary beneficiary are also analysed. Furthermore, we perform the expense analysis using the particle
swarm optimization technique and we obtain the optimality of service rate and hiatus rate. Finally, we study the effects of
changes in the parameters on some important performance measures of the system through numerical observations.
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1. Introduction

Owing to wide applications of vacation queues in the field of production systems, inventory models,
communication models, computer networks (see, e.g., Doshi [8]) have been studied by many researchers.
To know more about vacation queues and their applications, the readers may vide the survey work of
Teghem [24] and the monographs by Takagi [23], and Tian and Zhang [25].

Since our intent is to study vacation queueing models with bulk arrivals, we cite here only works
related to vacation models with bulk arrivals. The study on queues with multiple vacations, where ben-
eficiaries entries are bulk, were initiated by Baba [1]. Takagi [23] first suggested a variant of vacation
policy, which is a generalization of the multiple and single vacation. Lee et al. [15] analysed the steady-
state solution of Markovian bulk arrival queues with N -Policy and multiple vacations, where the service
times follow general distributions. Ke and Chu [13] studied the variant policy for a bulk arrival queueing
systems. Ke [12] analysed operating characteristics of bulk arrival variant vacation queues, where the
service times follow general distributions. Ke et al. [14] analyzed the performance measures of batch
entry M [X]/G/1 vacation queues, where the server is unreliable.

Bouchentouf and Medjahri [6] discussed the performance evaluation of the feedback queue with dif-
ferentiated vacations and balking. Bouchentouf and Guendouzi [3] derived a steady-state solution of the
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feedback queue associated with differentiated vacations, impatient customers and vacation interruptions.
Bouchentouf et al. [5] analyzed the queue in which interruptions occurs when the server is on differenti-
ated working vacation and also the customers lost their patience. Bouchentouf and Guendouzi [4] studied
the steady-state solution of single server bulk arrival variant vacation queues with Bernoulli feedback and
impatient beneficiaries.

Ibe and Isijola [11] first analysed a novel type of vacation scheme in queues in which the server is per-
mitted to take two different vacations and the span of the second type of vacations is shorter than the span
of the first type of vacations. The time-dependent solution of the queues analyzed in Ibe and Isijola [11]
is carried out in Vijayashree and Janani [27]. Subsequently, Suranga and Liu [22] explored the time-
dependent solution with the impact of client impatience on the model of Ibe and Isijola [11]. Recently,
Suranga et al. [21] have studied the transient solution of multiple differentiated vacation queues with
impatient clients with an application to a scenario that arises in IEEE 802.16E power saving mechanism.
Vadivukarasi et al. [26] analysed the optimization of M/M/1/N queue with differentiated vacations.
Gupta and Kumar [10] studied the retrial queue with differentiated vacations and state dependent arrivals.
Xu et al. [28] discussed the steady-state behaviour of batch customers entry single server working vaca-
tion queues. Yu et al. [30] analyzed the steady-state solution for the GI [x]/M b/1/L queues with partial
batch rejection and multiple working vacations. A discussion on the steady-state solution of discrete-time
batch arrival working vacation queues can be seen in Li et al. [16]. The steady-state solution of single
server Markovian queues, where the server follows multiple working vacations was studied by Baba [2].
Gao and Yin [9] studied GeoX/G/1 queues with working vacations and vacation interruptions. Luo et
al. [17] analysed the optimality of expense model for working vacation queues. Ye [29] investigated the
queues where the arrivals are bulk and server is permitted to follow two-stage vacations policy.

In this paper, we extend the model analysed in Ibe and Isijola [11] by incorporating the possibility
of beneficiaries’ entry as a batch. Using particle swarm optimization, we present a discussion on the
optimality for the model. The model discussed in this work helps us to study numerous real life queueing
situations, in order to improve the service process. Moreover, to the best of our knowledge, queueing
systems with bulk arrival and differentiated vacations has not been studied in the literature. This paper
makes a contribution in this sense.

The rest of this paper is organized as follows. A detailed mathematical description of the MX/M/1
queue is shown in Section 2. Practical motivation of the concerned model is given in Section 3. In
Section 4, we establish the steady-state solution of the model. In Sections 5 and 6, we evaluate the
stability condition and its stochastic decomposition form, respectively. The LST of the waiting time
distribution of an arbitrary beneficiary is obtained in Section 7. The discussion on the optimality of the
model is studied in Section 8. The impacts of the parameters on the essential performance measures and
the conclusion notes are presented in Section 9 and 10, respectively.

2. The system description

Consider an MX/M/1 differentiated hiatus queue. The mathematical description of this queue is as
follows.

• Clients enter into the system in batches, according to a Poisson process with rate λ. Let the
batch size of clients arrival be a random variable B with the probability distribution function

Pr(B = i) = bi, i ≥ 1, and the probability generating function B(z) =
∞∑
i=1

biz
i.

• We assume that the duration of the service to the clients has an exponential distribution with param-
eter µ.

• Once the system becomes empty, after a non-zero busy period, the server will take a hiatus of type I.
When the duration of the hiatus of type I completes, if there are clients in the system, the server
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starts to provide the service immediately. Otherwise, the server decides to take a hiatus of type II,
which is of shorter duration than the duration of the hiatus of type I. On return from the hiatus of
type II, if the server finds one or more clients in the system, the server provides service for them. If
the server finds zero clients presence in the system on return from the hiatus of type II, it proceeds
for another hiatus of type II and follows this approach until it finds at least one beneficiary waited
for the service upon returning from a hiatus of type II. We assume that the duration of hiatus of type
I and hiatus of type II have exponential distributions with parameters α1 and α2, respectively, and
α1 < α2.

3. Practical motivations

A practical justification of the proposed model arises from a situation associated with a bank clerk sup-
porting daily banking activities, where the beneficiary entry may be more than one. A primary task of
the clerk is to handle customers and their financial transactions. Once completing the needs of all the
beneficiaries who are waiting in the line, the clerk decides to take a hiatus for a refreshment of having
tea or coffee. After returns from the hiatus, if there is at least one beneficiary waiting to receive service,
the bank clerk starts to provide the service immediately. If there is no waiting beneficiary while returning
from the hiatus, the bank clerk decides to take a hiatus to do one of the secondary tasks like data en-
try, maintaining customer and transaction records, counting cash, verifying financial information without
making any errors, cash management procedures, etc. After completing a secondary task, if there is at
least one beneficiary waiting to receive service, the bank clerk starts to provide the service immediately,
otherwise the clerk decides to do another secondary task. The clerk continues this process until he finds
at least one beneficiary in the waiting line.

Another real time application of the system under discussion is as follows. In manufacturing envi-
ronments, where assemblers work with automated systems and complex robotics, their main task is to
produce components by assembling parts and subassemblies. After completing the main task, if no as-
sembling parts are available to produce components, the assembler immediately decides to take a hiatus
to have a tea/coffee. This hiatus may be taken as a hiatus of type I (of longer duration). After returning
from the hiatus of type I, if any parts are available to assemble, the assembler immediately starts the
main task, otherwise he decides to clean and maintain the work area and equipment, including tools.
This hiatus period may be taken as a hiatus of type II. After completing the cleaning process, if any parts
are available to assemble, the assembler immediately decides to start the main task, otherwise he decides
to take another hiatus of type II to conduct quality control checks. The assembler continues this process
and takes a hiatus of type II to check the supply levels, place orders, verify receipt of supplies, complete
production and quality forms, and etc., until he/she find parts to assemble.

4. Steady state analysis

Let L(t) be the number of beneficiaries present in the system at time t and

S(t) =

 2 if the server is busy
0 if the server is in type I hiatus
1 if the server is in type II hiatus

Then the process {(S(t), L(t))} is a two dimensional Markov process with the state space

{(0, 0)} ∪ {(1, 0)} ∪ {(s, l) : l ≥ 1, s = 0, 1, 2}
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Let

pl = lim
t→∞

Prob {S(t) = 2, L(t) = l} , l ≥ 1

qi,l = lim
t→∞

Prob {S(t) = i, L(t) = l} , i = 0, 1, l ≥ 0

The inter-arrival times, service times and hiatus times are mutually independent. Moreover, a first in first
out (FIFO) order is followed in the service providing process.

Figure 1. State transition diagram for the case b1 + b2 + b3 = 1

According to the Markov theory, the steady-state balance flow equations of the assumed model are
the following.

(λ+ µ)p1 = α1q0,1 + α2q1,1 + µp2 (1)

(λ+ µ)pn = α1q0,n + α2q1,n + µpn+1 + λ
n−1∑
k=1

bk pn−k, n ≥ 2 (2)

(λ+ α1)q0,0 = µp1 (3)
(λ+ α1)q0,1 = λb1q0,0 (4)

(λ+ α1)q0,n = λbnq0,0 + λ

n−1∑
k=1

bk q0,n−k, n ≥ 2 (5)

λq1,0 = α1q0,0 (6)
(λ+ α2)q1,1 = λb1q1,0 (7)

(λ+ α2)q1,n = λ

n∑
k=1

bk q1,n−k, n ≥ 2 (8)
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Let P (z) =
∞∑
n=1

pnz
n and Qi(z) =

∞∑
n=1

qi,nz
n, i = 0, 1, be the partial probability generating functions.

Multiplying (1) and (2) by appropriate zn and adding them, we get

(λ+ µ)
∞∑
n=1

pnz
n = µ

∞∑
n=1

pn+1z
n + α1

∞∑
n=1

q0,nz
n + α2

∞∑
n=1

q1,nz
n + λ

∞∑
n=2

n−1∑
k=1

bkpn−kz
n

P (z) =
z[α1Q0(z) + α2Q1(z)− µp1]

(λ+ µ)z − µ− λzB(z)
(9)

In the same way, from (4) and (5) we obtain

(λ+ α1)
∞∑
n=1

q0,nz
n = λ

∞∑
n=1

bnz
nq0,0 + λ

∞∑
n=2

n−1∑
k=1

bkq0,n−kz
n

Q0(z) =
λB(z)q0,0

λ(1−B(z)) + α1

(10)

From (7) and (8) we get

(λ+ α2)
∞∑
n=1

q1,nz
n = λ

∞∑
n=1

bnz
nq1,0 + λ

∞∑
n=2

n−1∑
k=1

bkq1,n−kz
n

Q1(z) =
λB(z)q1,0

λ(1−B(z)) + α2

(11)

As limz→1 P (z), we have

P (1) = lim
z→1

z[α1Q
′
0(z) + α2Q

′
1(z)] + [α1Q0(z) + α2Q1(z)− µp1]

(λ+ µ)− λzB′(z)− λB(z)

=
α1Q

′
0(1) + α2Q

′
1(1) + [α1Q0(1) + α2Q1(1)− µp1]

µ− λB′(1)
,

=

λB′(1)
α1

+
(
α1

α2

)(
λ+α2

λ+α1

)
B′(1)

1− ρ
p0, if ρ =

λB′(1)

µ

Note that positive limiting probability P (1) exists only if ρ < 1. From the law of total probability, we
have

p1 =
1− ρ

λB′(1)
α1

+
(
α1

α2

)(
λ+α2

λ+α1

)
B′(1) + λµ

α1(λ+α1)
(1− ρ) +

(
α1

α2

)(
µ

λ+α1

)
(1− ρ) + µ(1−ρ)

λ

(12)

Remark 1. If the entry of beneficiaries into the system is restricted to 1, then (12) becomes

p1 =

(µ−λ)
µ(

µ
α1

)
+
(
α1µ
α2λ

)(
λ+α2

λ+α1

) (13)

The above expression for p1 is in agreement with p1,0 given in [11], after making appropriate notations
and assumptions.
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5. The stability condition

Using the lexicographical order, the infinitesimal generator of the Markov process {(S(t), L(t))} can be
given in the Block-Jacobi matrix as

R =


G0 G1 G2 G3 G4 · · ·
H0 F1 F2 F3 F4 · · ·

F0 F1 F2 F3 · · ·
F0 F1 F2 · · ·

F0 F1 · · ·


where

G0 =

(
−(λ+ α1) α1

0 λ

)
, Gi =

(
0 λbi 0
0 0 λbi

)
, i ≥ 1, H0 =

µ 0
0 0
0 0


F1 =

−(λ+ µ) 0 0
α1 −(λ+ α1) 0
α2 0 −(λ+ α2)

 , F0 =

µ 0 0
0 0 0
0 0 0


Fi =

λbi−1 0 0
0 λbi−1 0
0 0 λbi−1

 , i ≥ 2

Here, the matrix E =
∑∞

i=0 Fi is irreducible. From Neuts [19], we have the following theorem.

Theorem 1. The Markov process {S(t), L(t)} is ergodic if and only if ρ = λ
∑∞

i=1 ibi
µ

= λb
µ
< 1.

Proof. After some mathematical manipulations, the irreducible matrix E can be expressed as 0 0 0
α1 −α1 0
α2 0 −α2


Assume δ to be the invariant vector of E, i.e. δE = 0 and δe = 1, where e denotes the column vector
whose entries are all one. Here, the value of δ is (0, 0, 1). From Neuts [19], {S(t), L(t)} is ergodic if and
only if

δ

∞∑
s=2

(s− 1)Fse < δF0e, λb < µ, and λb/µ < 1

In this case, the equation
∞∑
i=0

FiK
i = 0 has the minimal nonnegative solution of

K =

k1 k2 k3
0 k4 k5
0 0 k6
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By solving the equation
∞∑
i=0

FiK
i = 0, we get

µ− (λ+ µ)k1 +
∞∑
s=2

λbs−1k
s
1 = 0

− (λ+ µ)k2 +
∞∑
s=2

λbs−1k2

s−1∑
l=0

kl1k
s−l−1
4 = 0

− (λ+ µ)k3 +
∞∑
s=2

λbs−1

{
k3

s−1∑
l=0

kl1k
s−l−1
6 + k2k5

s−2∑
l=0

kl1

s−l−2∑
m=0

km4 k
s−l−m−2
6

}
= 0

α1k2 − (λ+ α1)k4 +
∞∑
s=2

λbs−1k
s
4 = 0

α1k3 − (λ+ α1)k5 +
∞∑
s=2

λbs−1k5

s−1∑
l=0

kl4k
s−l−1
6 = 0

α2k3 − (λ+ α2)k6 +
∞∑
s=2

λbs−1k
s
6 = 0

By solving the above set of equations, we obtain the minimal nonnegative solution of
∞∑
i=0

FiK
i = 0. �

6. Stochastic decomposition

In this section, we establish the stochastic decomposition form of stationary system size as the following
theorem.

Theorem 2. If ρ < 1, then the stationary system length R(z) can be decomposed into addition of two
independent random variables

R(z) = Rµ(z) +Rh(z)

whereRµ(z) is the steady-state queue length of the standardMX/M/1 queues andRh(z) is the additional
load in the queue length owing to the differentiated hiatuses and is given by

Rh(z) =

α1B(z)λ(λzφ2(z) + α2φ1(z) + φ1(z)φ3(z)) + λ2B(z)φ2(z)φ3(z) + (λ+ α1)φ1(z)φ2(z)(φ3(z)− λz)
λ(λ+ α1)φ1(z)φ2(z)(z − 1)g

Here

φ1(z) = λ(1−B(z)) + α1

φ2(z) = λ(1−B(z)) + α2

φ3(z) = (λz(1−B(z)) + µ(z − 1))

φ(z) = φ1(z)φ2(z)φ3(z)

g =
1

λB′(1)
α1

+
(
α1

α2

)(
λ+α2

λ+α1

)
B′(1) + λµ

α1(λ+α1)
(1− ρ) +

(
α1

α2

)(
µ

λ+α1

)
(1− ρ) + µ(1−ρ)

λ
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Proof. From the analysis carried out in Section 3, the PGF of stationary queue length is

R(z) = P (z) +Q0(z) +Q1(z) + q0,0 + q1,0

=
z[α1Q0(z) + α2Q1(z)− µp1]

(λ+ µ)z − µ− λzB(z)
+

λB(z)q0,0
λ(1−B(z)) + α1

+
λB(z)q1,0

λ(1−B(z)) + α2

+
µp1
λ

After some mathematical manipulations, the above equation can be expressed as

R(z) =
µ(1− ρ)(z − 1)

λz(1−B(z)) + µ(z − 1)
Rh(z) (14)

where

Rh(z) =

α1B(z)λ(λzφ2(z) + α2φ1(z) + φ1(z)φ3(z)) + λ2B(z)φ2(z)φ3(z) + (λ+ α1)φ1(z)φ2(z)(φ3(z)− λz)
λ(λ+ α1)φ1(z)φ2(z)(z − 1)g

Here

φ1(z) = λ(1−B(z)) + α1

φ2(z) = λ(1−B(z)) + α2

φ3(z) = (λz(1−B(z)) + µ(z − 1))

φ(z) = φ1(z)φ2(z)φ3(z)

g =
1

λB′(1)
α1

+
(
α1

α2

)(
λ+α2

λ+α1

)
B′(1) + λµ

α1(λ+α1)
(1− ρ) +

(
α1

α2

)(
µ

λ+α1

)
(1− ρ) + µ(1−ρ)

λ

Now lim
z→1

Rh(z) = 1 reveals that Rh(z) is the PGF of the extra queue length occurring in the system
owing to the differentiated hiatuses. �

7. Waiting time distribution

In this section, we obtain the LST of the waiting time distribution of an arbitrary beneficiary.

Theorem 3. If ρ = λb/µ < 1, then

W ∗(s) =

(
1−B(G∗(s))

b(1−G∗(s))

)((
α1

s+ α1

)
[Q0(G

∗(s))

+q0,0] +

(
α2

s+ α2

)
[Q1(G

∗(s)) + q1,0] + P (G∗(s))

)
where W ∗(s) is the LST of the stationary waiting time of an arbitrary beneficiary.

Proof. Here we assume the following five viable cases.

Case 1. A bunch of beneficiaries, including the labelled beneficiary, enter into the system when the
system is in the first hiatus state (0, k), k ≥ 1. As there are k beneficiaries in front of the service
provider, the waiting time of the labelled beneficiary is the sum of the service times of k beneficiaries
who are outside of his/her batch and the sum of the service times of all beneficiaries who are stand in
front of him/her in the batch. Let rl, l = 0, 1, . . . , be the probability that the labelled beneficiary stand in
the jth position within his/her batch. Using the results from renewal theory [7], we have

rl =
1

b

∞∑
n=l

bn
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Since there is no service during the first hiatus time, after the end of this hiatus time all the beneficiaries
are served in the regular busy period. The LST of the service time distribution in a regular busy period is

G∗(s) =
µ

s+ µ

The waiting time of the labelled beneficiary in the state (0, k), denoted by W0,k, has the LST

W ∗
0,k(s) =

∞∑
l=1

rl

(
α1

s+ α1

)
{G∗(s)}k+l−1

=

(
α1

s+ α1

) ∞∑
l=1

1

b

∞∑
m=l

bmG
∗(s)k+l−1

=
1

b

(
α1

s+ α1

) ∞∑
m=1

bmG
∗(s)k

{
1−G∗(s)m

1−G∗(s)

}
=

1

b

(
α1

s+ α1

){
G∗(s)k −B (G∗(s))G∗(s)k

1−G∗(s)

}
From this

∞∑
k=1

q0,kW
∗
0,k(s) =

1

b

(
α1

s+ α1

){
Q0 (G

∗(s)) (1−B (G∗(s)))

1−G∗(s)

}
(15)

Case 2. A bunch of beneficiaries join the waiting line together with the labelled beneficiary when the
system is in the state (1, k), k ≥ 1, that is the server is on type II hiatus. As discussed in the case 1, if the
labelled beneficiary is in the jth position of his batch, the LST of waiting time of the labelled beneficiary
is given by

1

b

(
α2

s+ α2

){
G∗(s)k −B (G∗(s))G∗(s)k

1−G∗(s)

}
HereW1,k andW ∗

1,k(s) denote labelled beneficiary’s waiting time conditioned that a batch of beneficiaries
arrive in the state (1, k) and its LST, respectively. Then

∞∑
k=1

q1,kW
∗
1,k(s) =

1

b

(
α2

s+ α2

){
Q1 (G

∗(s)) (1−B (G∗(s)))

1−G∗(s)

}
(16)

Case 3. A bunch of beneficiaries join the queue including the labelled beneficiary when the service
provider is in the regular busy period in which k beneficiaries are already in the system. The labelled
beneficiary’s waiting time Wµ has the LST

W ∗
µ(s) =

∞∑
l=1

rl {G∗(s)}k+l−1

=
∞∑
l=1

1

b

∞∑
m=l

bmG
∗(s)k+l−1

=
1

b

∞∑
m=1

bmG
∗(s)k

{
1−G∗(s)m

1−G∗(s)

}
=

1

b

{
G∗(s)k −B (G∗(s))G∗(s)k

1−G∗(s)

}
From this

∞∑
k=1

pkW
∗
µ(s) =

1

b

{
P (G∗(s)) (1−B (G∗(s)))

1−G∗(s)

}
(17)
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Case 4. A batch of beneficiaries including the labelled beneficiary arrive when the system is in the state
(0, 0), that is, the server is on type I hiatus and empty system. As there is no beneficiaries in front of the
batch of beneficiaries in the system. The labelled beneficiary’s waiting time, W0,0, is equal to the sum of
service times of beneficiaries infront of his/her position within the batch and it has the LST

W ∗
0,0(s) =

∞∑
l=1

rl

(
α1

s+ α1

)
{G∗(s)}l−1

=

(
α1

s+ α1

) ∞∑
l=1

1

b

∞∑
m=l

bmG
∗(s)l−1

=
1

b

(
α1

s+ α1

) ∞∑
m=1

bm

{
1−G∗(s)m

1−G∗(s)

}
=

1

b

(
α1

s+ α1

){
1−B (G∗(s))

1−G∗(s)

}
(18)

Case 5. A batch of beneficiaries including the labelled beneficiary arrive in the second hiatus state (1, 0).
Therefore, the labelled beneficiary’s waiting time conditioned that a batch of beneficiaries arrive in the
state (1,0), denoted by W1,0, has the LST

W ∗
1,0(s) =

∞∑
l=1

rl

(
α2

s+ α2

)
{G∗(s)}l−1

=
1

b

(
α2

s+ α2

){
1−B (G∗(s))

1−G∗(s)

}
(19)

The waiting time distribution W ∗(s) is defined by

W ∗(s) =
∞∑
k=1

q0,kW
∗
0,k(s) +

∞∑
k=1

q1,kW
∗
1,k(s) +

∞∑
k=1

pkW
∗
µ(s) + q0,0W

∗
0,0(s) + q1,0W

∗
1,0(s)

From equations (15)-(19), we have

W ∗(s) =
1

b

(
α1

s+ α1

){
(1−B (G∗(s)))

1−G∗(s)

}
[Q0 (G

∗(s)) + q0,0] +
1

b

{
P (G∗(s)) (1−B (G∗(s)))

1−G∗(s)

}
+
1

b

(
α2

s+ α2

){
(1−B (G∗(s)))

1−G∗(s)

}
[Q1 (G

∗(s)) + q1,0]

=

(
1−B(G∗(s))

b(1−G∗(s))

)((
α1

s+ α1

)
[Q0(G

∗(s)) + q0,0]

+

(
α2

s+ α2

)
[Q1(G

∗(s)) + q1,0] + P (G∗(s))

))
�

Remark 2. The waiting time W is seen by the labelled beneficiary to consist of two independent wait-
ing times, Wµ and Wh. That is

W ∗(s) = W ∗
µ(s)W

∗
h (s)

where

W ∗
µ(s) =

(
1−B(G∗(s))

b(1−G∗(s))

)
W ∗
h (s) =

((
α1

s+ α1

)
[Q0(G

∗(s)) + q0,0] +

(
α2

s+ α2

)
[Q1(G

∗(s)) + q1,0] + P (G∗(s))

))
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andW ∗
µ(s) is the LST of waiting time of the labelled beneficiary inMX/M/1, [18](equation (6.7.8)), and

W ∗
h (s) is the LST of additional waiting time to the labelled beneficiary caused by differentiated hiatus

times.

8. Optimization analysis

In this section, we present an expense model by defining the total expense function, in which the service
rate is the control variable. Our motto is to control these variables in order to reduce the total mean
expense per quantity. The expense elements are defined per unit time as follows:

• C1 ≡ holding expense for each client seen in the system,

• C2 ≡ waiting expense when one client is waiting to receive the service,

• C3 ≡ expense for the period of server busy,

• C4 ≡ expense when the server is on first hiatus,

• C5 ≡ expense when the server is on second hiatus,

• C6 ≡ expense for service.

Here, for the numerical discussion, we take the service rate µ as the decision variable and with the above
expense elements, the expense function TC as

TC = C1E(N) + C2E(W ) + C3PB + C4PV1 + C5PV2 + C6µ

where PB is the probability that the server is on busy state, PV1 and PV2 are the probabilities that the server
is on the first and the second hiatus, respectively. Our expense reduction approach can be summarized
mathematically as

Minimize TC(x)

where x is the optimum rate. The motto is to get the optimal service rate µ∗ to cut down the total expense
TC(x). We solve the problem using Particle Swarm Optimization (PSO) and the results are presented in
Section 8. For the concerned algorithm we refer to [20].

9. Numerical examples

In the experiment, we aim to study the behaviour of the mean number of customers in the system E(N)
against the arrival rate λ for two different values of average batch size B′(1). For this study, we have
taken µ = 2, α1 = 0.2 and α2 = 0.6. In Figure 2a), it is evident that a surging trend is seen in the curves
of E(N) for the increase in the arrival rate. Also, we can see that the curve pertaining to B′(1) = 1.5 is
above the curve pertaining to the single arrival system, that is B′(1) = 1. This is reasonable, since the
increase of λ indicates the increase in the number of customers joining the queue, which will increase
E(N). In Figure 2b), we take the values of λ, α1 and α2 as 0.45, 0.2 and 0.6, respectively. As expected,
the mean system size decreases as the service rate µ increases. The curve pertaining to B′(1) = 1.5 is
above the curves pertaining to the remaining two average batch values due to the decrease in the average
batch size.

Now, we apply the PSO algorithm to optimize our expense function described in Section 7. Fig-
ure 3a) represents the number of iterations required to attain the optimum expense in PSO. Here, we take
C1 = 10, C2 = 15, C3 = 60, C4 = 30, C5 = 41, C6 = 53, λ = 0.45, α1 = 0.91 and α2 = 3.9. The
curve pertaining to the optimal expense attains the steady state after 12th iteration. Hence the minimum
expected expense TC = 199.5328 is obtained at µ∗ = 1.845. For fixed values of λ = 0.45 and α1 = 0.2,
Table 1 lists the optimum values of µ together with the mean system length E(N)∗, the mean waiting
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a) b)

Figure 2. E(N) against λ for M/M/1 and MX/M/1 queue

time of a customer E(W )∗ and the expense function f ∗. A decreasing pattern is observed in all four
concerning metrics for the surge in α2. Table 2 shows the optimum values of µ together with E(N)∗,
E(W )∗ and f ∗. A decreasing pattern is observed in all four parameters considered in Table 2, when the
surge occurs in α1. Also, note that the decreasing pattern seen in all the metrics discussed in Table 2 is
drastic compared to the decreasing pattern observed in all the metrics discussed in Table 1.

a) b)

Figure 3. Total expense against: a) iterations, b) µ and α1

In Figure 3b), we consider the parameters C1 = 21, C2 = 15, C3 = 42, C4 = 31, C5 = 24, C6 =
18, α2 = 8.2 to optimize the expense function. The curve reaches the steady state after the 8th iteration.
Hence the minimum expected expense, TC = 209.45 is acquired at α1 = 1, µ = 3.4224. Corresponding
to swarm optimization, Figure 3b) demonstrates the effect of α1 and µ on the expense function.
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Table 1. Expense analysis for various values of α2

λ = 0.45, α1 = 0.2

α2 µ∗ E(N)∗ E(W )∗ f∗

0.3 2.1975 2.0352 4.5228 247.0979
0.4 2.1864 2.0108 4.4684 245.2667

0.45 2.1838 2.0047 4.4549 244.7950
0.5 2.1804 2.0005 4.4454 244.4712

0.58 2.1806 1.9966 4.4369 244.1382
0.6 2.1804 1.9959 4.4359 244.0787

0.65 2.1800 1.9945 4.4322 243.9586
0.7 2.1797 1.9936 4.4301 243.8697

0.73 2.1796 1.9931 4.4292 243.8272
0.8 2.1795 1.9924 4.4276 243.7536

Table 2. Expense analysis for various values of α1

λ = 0.45, α2 = 3.9

α1 µ∗ E(N)∗ E(W )∗ f∗

0.41 1.9483 1.5074 3.3498 212.7395
0.52 1.9048 1.4081 3.1291 206.9547
0.59 1.8867 1.3665 3.0366 204.6079
0.62 1.8805 1.3520 3.0044 203.8086
0.67 1.8715 1.3315 2.9588 202.6854
0.73 1.8628 1.3114 2.9142 201.6099
0.77 1.8579 1.3002 2.8894 201.0220
0.82 1.8526 1.2883 2.8630 200.4018
0.86 1.8490 1.2801 2.8446 199.9812
0.91 1.8450 1.2712 2.8248 199.5328

10. Conclusion

In this paper, we discussed anMX/M/1 queue with differentiated hiatuses. We obtained the steady-state
probabilities involving in our model through PGFs and stability condition. We also derived stochastic
decomposition property of system size distribution. Waiting time distribution of an arbitrary beneficiary
in the system is carried out. We also considered a cost optimization problem using particle swarm op-
timization (PSO). Further, we investigated the impact of parameters on the performance indices and the
cost functions of the system through numerical arguments. The queueing model may be considered as
a generalized of the model of discussed by Ibe [11]. The considered model can be further generalize
with the following general type service times. Furthermore, the analysed model can be generalized with
unreliable server and repair times.
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