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Abstract

In a complex supply chain network, the production nodes, seller nodes, and buyers are connected randomly. We assume a
process of joining two random nodes leading to the bivariate Poisson probability mass function. There exist two types of links
- one is horizontal (H) and the other is vertical (V), which support the continuous flow of commodities through the supply
chain. This induces competition among workers at a node to manage these two types of links within fixed constraints and
creates bargaining to decide the optimal degree of both types of links at a node. We use the Nash security point to obtain
the bargaining solution describing the optimal links. We reduce the carrying cost and ordering cost of inventory, which are
contrary in their nature by introducing horizontal and vertical links, respectively. We modify the total cost function and
establish a new economic order quantity (EOQ), optimal shortage quantity, and total optimal cost in terms of the optimal
degree of H and V cooperation.

Keywords: horizontal cooperation, vertical cooperation, carrying cost, ordering cost, economic order quantity (EOQ)

1. Introduction

Cooperation and coordination among agents are instrumental in establishing successful trades in both
national and international markets. Cooperation can be defined as the process of coordinating the goals
and actions of agents under some binding agreements. The number of agents cooperating with a node
determines its bargaining power in a complex network. Hence, in the era of networking, it is considered
very important and relevant to decide the optimal degree of cooperation at a node of the supply chain
according to the cost of investing in a link. This creates a new area of research. In this paper, we
investigate how we can reduce the total cost of inventory and improve customer service by determining
the economic order quantity (EOQ) based on the degree of cooperation at a node of the supply chain.

Ashkan et al. [10] introduce a cooperative aggregate production plan to decrease operating costs.
When the production plans of several plants are integrated, they can exchange workspace and product
inventory. Thus, the demand for products can be satisfied at a lower cost. Hendalianpour et al. [14]
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investigate a two-echelon supply chain model with two manufacturers and two retailers. They develop a
competitive structure with Grey stochastic demand and present Grey optimization and analysis of coordi-
nation within the chain. The management of inventory deals with the coordination of materials, produc-
tion, and information flows among suppliers, distributors, retailers, and consumers. This management is
not possible without cooperative links among supply chain nodes. A measure of the optimal degree of
cooperation (e.g. number of cooperative links) at a node is necessary to predict the EOQ and also to know
about the optimal shortage quantity to appropriately create goodwill from the customers. Fiestras-Janeiro
et al. [8] survey the applications of cooperative game theory in the management of centralized inventory
systems. In a lot size cooperative game, the cooperation links are of two types, “horizontal” and “ver-
tical”. Yang et al. [28] suggest that cooperation is more powerful in comparison to non-cooperation in
reducing operational costs in pickup and delivery services.

The cooperative links are further divided into horizontal buyer-buyer or seller-seller links and verti-
cal buyer and seller links. Horizontal links refer to the shared service centers, horizontal alliances, and
horizontal cooperative purchasing. Lozano et.al. [20] argue that cooperation among firms has paramount
importance, as it not only reduces the transportation (or machine running) costs, but also improves the
performance of each participating firm. Vertical links apply to situations such as co-makership, and
public-private partnerships. Hendalianpour [12] adopts Double Interval Grey Numbers to more accu-
rately formulate consumer behavior and enhance the quality of the analytical results in practical decision
making. In this work [12], a game-theoretic model is proposed for the joint decisions made on pricing
and lot-sizing by retailers of perishable goods. Peide Liu et al. [18] use the Interval Valued Fuzzy Rough
Number-BWM approach to address decision-making in selecting competent green suppliers in the supply
chain.

We get the motivation of our work from a similar article by Julia [5] which shows that cooperation
through horizontal links reduces the carrying and ordering costs through the vertical links. The play-
ers enhance the degrees of horizontal and vertical cooperation through investing in links in the supply
chain network. Carrying and ordering costs play a major role in determining the EOQ. Buckley and Cas-
son [3] identify cooperation as a special type of coordination. Peide Liu and Hendalianpour [17] presents
a model, which aims to integrate physical and material dimensions to maximize net corporate profits
through inbound and outbound financial flows. One factor influencing the intensity of competition is the
bargaining power of suppliers. Schotanus [23] mentions that many cooperative organizations consider
horizontal and vertical co-operation to have significant differences, because the number of partners in
vertical technical alliances is rather low and co-operation is at a higher level. The focus of vertical co-
operation is more on technical capabilities, mainly regarding purchasing (quantity and outcome), as well
as on process improvements and new technologies. Thun [24] identifies vertical cooperation as the basis
of supply chain management, because it includes companies, industries, and corporates at different lev-
els of the supply chain. Brandenburger and Harborne [2] show that horizontal co-operation differs from
its vertical counterpart, where companies complement each other. Hendalianpour et.al. [13] optimize a
multi-product, multi-level Omni-channel distribution network and the shipping flow of products within a
network under uncertain conditions. They develop a combined algorithm based on Benders Decomposi-
tion (BD) and Lagrangian Relaxation. We refer to Schotanus [23] for an in-depth survey of the literature
on such models of co-operation.

This paper answers the following research questions, under the assumption of the model:

1. What would be the optimal degree of horizontal and vertical cooperation at a node of the supply
chain?

2. How does the formation of horizontal and vertical cooperative links affect EOQ and optimum short-
age quantity?

The reduced total optimal cost of EOQ with shortage is an ensuing result in terms of the optimal
degrees of both types of cooperation. Other studies made in this area are by Johnson [15], Essig [7],
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Heijboer [11], Cruijssen et al. [4], etc. In all of these works, results on the potential benefits of horizontal
cooperation under logistics service providers are presented. Kawamura [16] gives a theorem regarding
the sum of n independent bivariate vectors. Shenle Pan et al. [22] study, as a tool to explain horizon-
tal cooperation, cooperative games under precedence constraints and obtain the Shapley value for these
games as a suitable solution concept. Small and medium-sized companies have more interest in hori-
zontal cooperation as it enhances their bargaining power in comparison to their suppliers. Horizontal
cooperation plays a very important role in the reduction of carrying costs (e.g. transportation, running
logistic, holding and setup costs). Fiske and Bai [25] explore difference in status (respect, prestige)
as vertical inequality and unequal power sharing (resource control) as horizontal inequality. However,
power-sharing is mutual cooperation of the warm. It is also known as horizontal equality. Peide Liu
et al. [19] use Bertrand cooperation and Stackelberg competition games based on Double Interval Grey
numbers and also specify the price according to various demand functions and power structures between
the manufacturers and common retailers. For further reference, the interested reader can look into, Chris-
tian and Gerald [27], Herbert et al. [6], Mishra et al. [21], Vasnani et al. [26], Yu et al. [29], and Binmore
[1], etc. It is to be noted that one of the most prominent reasons for horizontal cooperation is to use
synergistic effects in a supply chain (viz., economies of scale, scope, speed, etc.) that reduce transaction
costs due to decreasing the number of transactions and strengthening competitiveness. For instance, if
there is a fixed cost per order, agents will pay less when they order simultaneously as a group, as opposed
to making their orders separately. Michel et al. [9] propose an allocation problem that determines how
these savings should be divided among the agents.

In a complex supply chain network, the linkage costs of horizontal and vertical cooperation are deci-
sive variables. We develop a new way to compute the optimal degree of horizontal and vertical cooper-
ation by employing the concept of a Nash security point at a node of a complex supply chain network.
Moreover, we further intend to optimize the order quantity of inventory flow by determining the Nash
security point of a game involving horizontal and vertical cooperation where horizontal links help reduce
the carrying costs and vertical links help reduce the ordering costs simultaneously. Under the assump-
tions given in Sections 2 and 6.1, we also derive a formula for the optimal shortage quantity and total
optimal inventory cost at a node in terms of the degrees of both types of co-operation.

2. Definitions and assumptions

Kazutomo - Kawamura [16] defines the bivariate Poisson distribution. We use an analogous Poisson
distribution theorem in our model. Let H and V denote a horizontal cooperation variate and a vertical
cooperation variate, respectively, in a supply chain network.

Theorem 1. Consider the sum of independent bivariate horizontal and vertical cooperation (H,V )
vectors (H1, V1), (H2, V2),. . . , (Hn, Vn) in the case where the probability of links of each type are p00, p01
and p10, p11, and np00 = λ00, np01 = λ01, np10 = λ10 and np11 = λ11 are the expected numbers of each
type of horizontal and vertical cooperation pairs. The limiting distribution of the sum of the n vectors is
given by

P

(
H =

n∑
i=1

Hi = m,V =
n∑
i=1

Vi = n

)
=

min(m,n)∑
i=0

λ10
m−i λn−i01 λi11 e

−(λ10+λ01+λ11)

(k − i)! (l − i)! i!

Definition 1 (Degree of Horizontal Co-operation). The degree of horizontal cooperation at a
node is the sum of all the weights of linked companies that belong to the same stage in the supply chain,
i.e.

n∑
i=1

Hi = m
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Definition 2 (Degree of Vertical Cooperation). The degree of vertical cooperation at a node is
the sum of all the weights of linked companies that belong to different stages of the supply chain, i.e.

n∑
i=1

Vi = n

Definition 3 (Successful meetings). A meeting by one node is said to be successful when the node
forms a link to cooperate with other nodes with probability one. For example, in the case of horizontal
cooperation, this random variate may take the value 0 or 1. If Hi = 1, it implies that the i-th node
attempts to make a horizontal link which is successful, but if Hi = 0, it shows that horizontal meeting
is unsuccessful. Similarly, in the case of vertical cooperation, Vi = 1 implies that the ith node makes a
successful attempt to form a vertical link. But Vi = 0 shows that vertical meeting is unsuccessful.

The following assumptions are made in the development of the model.

(i) Inventory management is based mainly on two costs. One is the carrying cost which includes all
the costs involving the stock and transactions, and the second is the ordering cost that includes the
set up cost. It works as a mechanism to supply the inventory from one node to another node. These
two separate costs are managed by two cooperative teams of players at a node. This co-operation is
split into horizontal and vertical.

(ii) Horizontal cooperation occurs among the nodes involved in the same stage of the supply chain and
it normally produces/trades the same products among the nodes.

(iii) Vertical cooperation takes place through the formation of coalitions between the seller and the buyer
from one stage to the next stage of the supply chain. This type of cooperation is responsible for
reducing the ordering cost (viz., advertisement, stationery costs, communication costs, etc.).

(iv) At a node of the supply chain, there are two types of cooperation, some workers are involved in
horizontal cooperation and others in vertical cooperation.

(v) Bargaining power is proportional to the number of horizontal or vertical cooperation links in the
supply chain network.

(vi) The ordering cost is inversely proportional to the degree of vertical cooperation and the carrying
cost is inversely proportional to the degree of horizontal cooperation.

(vii) The costs resulting from horizontal cooperation are sub-additive i.e., disjoint coalitions among
nodes that belong to the same stage of the supply chain have an incentive to cooperate, since such
co-operation will reduce costs in comparison to individual action.

3. Notation

The following notation is used to develop the paper.

• λ01 = average number of successful buyer-seller links (average number of successful meetings to
initiate vertical cooperation),

• λ10 = average number of successful buyer-buyer or seller-seller links (average number of successful
meetings to initiate horizontal cooperation),

• λ11 = average number of successful buyer-buyer or seller-seller links, as well as buyer-seller links
(average number of successful meetings to initiate horizontal & vertical cooperation),

• λ00 = average number of links without successful meetings to initiate co-operation,
• h∗ = status quo point of the degree of horizontal co-operation,
• v∗ = status quo point of the degree of vertical cooperation,
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• h = maximum degree of horizontal cooperation,

• v = maximum degree of vertical cooperation,

• D = total demand,

• Q = quantity supplied per order,

• S = quantity shortage in a cycle,

• t = shortage time as a fraction of a cycle, i.e., 0 ≤ t ≤ 1,

• Ch = holding cost per unit item,

• C0 = ordering cost per order,

• Cs = shortage cost,

• C link
H = cost of horizontal cooperation link per node,

• C link
V = cost of vertical cooperation link per node.

4. The mathematical model

4.1. Non-cooperative game between horizontal and vertical cooperative teams

According to our assumptions, vertical and horizontal cooperation leads to the evolution of two distinct
teams of players at a particular node of the supply chain network. One team acts to increase the H links
of horizontal cooperation and the second team acts to increase the V links of vertical cooperation. Let
H be the horizontal degree and V the vertical degree. Each node has a fixed capacity for horizontal and
vertical co-operation holding at most h and v degrees, respectively. We search for an equilibrium point
of (H, V ). Thus, at every node in the supply chain, there exists a non-cooperative game whose strategies
are H and V .

For example, let a node of the supply chain be a wholeseller. The wholeseller has two teams of players
to enhance cooperation in the market for reducing the cost of the supplied commodity and making more
impact on the market. The wholeseller utilizes successful meetings of the type buyer-buyer (initiating
horizontal cooperation λ10) and successful meetings of the type buyer-seller (initiating vertical cooper-
ation λ01), but also utilizes cooperation between the buyer part of a node and seller part of the same
node (initiating horizontal and vertical cooperation simultaneously λ11). The wholeseller can also uti-
lize links where co-operation has not been initiated (where the is no declaration of horizontal or vertical
cooperation λ00).

4.2. Pure strategic game

We consider competitive games in which one team of players gets a reward according to the penalty of
another team. We observe a dilemma at a node of the supply chain which is analogous to a prisoner’s
dilemma. Two teams with conflicting interests are working to enhance the degree of cooperation with
other nodes of the supply chain. The dilemma faced by these teams is to declare or not declare cooper-
ation with other nodes. When both teams of players P1 and P2 declare cooperation, they both obtain a
reward of R. Player P1 has two strategies: declare cooperation (s1) or not to declare (s2). Player B also
has two strategies: declare cooperation (t1) or not to declare (t2).

t1 t2
s1 (R,R) (T, S)
s2 (S, T ) (S, S)

R is a reward when both cooperate, T denotes the temptation from exploiting a cooperator and S is the
sucker payoff from being exploited.
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Theorem 2. For any non-cooperative two-person, non-zero-sum matrix game there exists at least one
strategy pair in equilibrium.

Consider two teams (P1, P2) having conflicting objectives and using mixed strategy vectors X =
(x1, x2) and Y = (y1, y2), respectively, such that x1 + x2 = 1 , y1 + y2 = 1. We apply this to the
following problem. Let us consider the payoff tableau of the prisoner’s dilemma game at a supply chain
node, played by players P1 and P2 working to enhance the number of degrees in terms of horizontal and
vertical cooperation, respectively. Player P1 has two strategies: attempt to initiate a horizontal coalition
(s1) and not attempt to initiate a horizontal coalition (s2) . Player P2 also has two strategies: attempt to
initiate a vertical coalition (t1) and not to initiate a vertical coalition (t2).

t1 t2
s1 (λ11, λ11) (λ10, 0)
s2 (0, λ01) (λ00, λ00)

The payoff matrices of players P1 and P2 are AH =

[
λ11 λ10
0 λ00

]
and BT

v =

[
λ11 λ01
0 λ00

]
, respectively.

In both cases, when λ11 ≥ λ10 ≥ λ01 ≥ λ00 and λ11 ≥ λ01 ≥ λ10 ≥ λ00, we find that the strategy s1
dominates s2 and t1 dominates t2. In this case, according to two basic principles of the game: (i) each
player acts to maximize his or her own security level and (ii) the players use strategy pairs ((1, 0), (1, 0)),
which leads to a unique equilibrium point (λ11, λ11). Consequently, it is clear that when the average
number of meetings of horizontal and vertical cooperation (meeting among buyer and seller simultane-
ously) is more than the average number of meetings of type buyer-buyer (only horizontal cooperation)
and seller-seller (only vertical cooperation), then the unique equilibrium is to declare cooperation.

Consequently, we can say that when any node of the supply chain wants to make a link with a node
using both ways of cooperation i.e. horizontally as well as vertically, then a cooperative node of the
supply chain will be at equilibrium.

4.3. Mixed strategic game between two conflicting teams regarding horizontal and
vertical cooperation at a node

4.3.1. Mixed strategic game

The expected payoff for a game with payoff matrix A = (aij), 1 ≤ i ≤ 2, 1 ≤ j ≤ 2 , in which P1 uses
strategy X = (x1, x2) and P2 uses strategy Y = (y1, y2), is

XAY T =
∑

1≤i≤m

∑
1≤j≤n

xiaijyj

4.3.2. Optimal security levels (status quo point)

Definition 4. The status quo payoff point (otherwise known as the safety point or security point) is
the pair of payoffs (h∗, v∗) that each player can ensure if there is no cooperation between two teams of
players.

In other words, we can say that for a game with payoff matrix A, define P1’s and P2’s optimal security
levels, denoted by h∗ and v∗, respectively, where h∗ = max

X∈S
min
Y ∈T

XAY T and v∗ = min
Y ∈T

max
X∈S

XAY T .

This is also known as the Nash security point (h∗, v∗). According to this definition, the minimum and
maximum are to be taken over the finite sets T and S, respectively.

A mixed strategy for the horizontal cooperative player is denoted by a vector X = (x1, x2) and for
the vertical cooperative player Y = (y1, y2). This game is a two-person non-zero-sum game. The payoff
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matrix of this game is defined as
y1 y2

x1 (λ11, λ11) (λ10, 0)
x2 (0, λ01) (λ00, λ00)

The payoff matrix is
[
(λ11, λ11) (λ10, 0)
(0, λ01) (λ00, λ00)

]
, where, the payoff matrix for the horizontal cooperation

team AH =

[
λ11 λ10
0 λ00

]
and the payoff matrix for the vertical cooperation team BT

v =

[
λ11 λ01
0 λ00

]
. We

have to find the security point for the above payoff matrices. In this bi-matrix game, both players P1 and
P2 have mixed strategies vectors denoted by X = (x1, x2) and Y = (y1, y2), respectively.

For a game with payoff matrix AH define P1’s security level, denoted by h∗1, as follows

h∗1 = max
X∈S

min
Y ∈T

XAY T = max
(x1,x2)∈S

min
1≤j≤2

XA
(j)
H

= max
(x1,x2)∈S

min
[
x1, x2

] [λ11 λ10
0 λ00

]
= max

(x1,x2)∈S
min

{
x1λ11, λ10x1 + λ00x2

}
= max

0≤x1≤1
min

{
x1λ11, (λ10 − λ00)x1 + λ00

}
, since x2 = (1− x1)

The maximin value lies at the intersection of the two line segments z = x1λ11 and z = (λ10−λ00)x1+λ00.
Hence

x1λ11 = (λ10 − λ00)x1 + λ00

x1 =
λ00

(λ11 − λ10 + λ00)
, x2 =

(λ11 − λ10)
(λ11 − λ10 + λ00)

X =
[

λ00
(λ11−λ10+λ00)

(λ11−λ10)
(λ11−λ10+λ00)

]
Similarly, for a game with payoff matrix AH define P2’s security level, denoted by h∗2, as follows

h∗2 = min
(y1,y2)∈T

max
1≤i≤2

A(i)Y
T = min

(y1,y2)∈T
max
1≤i≤2

{λ11y1 + λ10y2, λ00y2}

= min
0≤y1≤1

max
1≤i≤2

{(λ11 − λ10)y1 + λ10, (λ00 − λ00y1)}

We find Y =
[

λ00−λ10
(λ11−λ10+λ00)

λ11
(λ11−λ10+λ00)

]
is the vector defining the security strategy of P2. The

expected payoff of the horizontal cooperation team is

h∗ = XAHY
T

where

h∗1 = h∗2 = h∗ =
[

λ00
(λ11−λ10+λ00)

(λ11−λ10)
(λ11−λ10+λ00)

] [
λ11 λ10
0 λ00

][ λ00−λ10
(λ11−λ10+λ00)

λ11
(λ11−λ10+λ00)

]

=
[

λ00λ11
(λ11−λ10+λ00)

λ00λ10
(λ11−λ10+λ00) + (λ11−λ10)λ00

(λ11−λ10+λ00)

] [ λ00−λ10
(λ11−λ10+λ00)

λ11
(λ11−λ10+λ00)

]
=
[

λ00λ11
(λ11−λ10+λ00) ·

λ00−λ10
(λ11−λ10+λ00) +

(
λ00λ10

(λ11−λ10+λ00) + (λ11−λ10)λ00
(λ11−λ10+λ00)

)
λ11

(λ11−λ10+λ00)

]
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Then

h∗ = Expected payoff of (AH)

=
λ00λ11(λ00 − λ10) + λ00λ10λ11 + (λ11 − λ10)λ00λ11

(λ11 − λ10 + λ00)2

=
λ00λ11

λ11 − λ10 + λ00

Similarly, for a game with payoff matrix Bv define P1’s security level denoted by v∗1 as follows

v∗1 = max
X∈S

min
Y ∈T

XBvY
T = max

(x1,x2)∈S
min
1≤j≤2

XB(j)
v = max

(x1,x2)∈S
min

[
x1, x2

] [λ11 0
λ01 λ00

]
= max

(x1,x2)∈S
min {λ11x1 + λ01x2, x2λ00}

= max
0≤x1≤1

min {λ11x1 + λ01(1− x1), (1− x1)λ00}, since x2 = (1− x1)

= max
0≤x1≤1

min {(λ11 − λ01)x1 + λ01, (−λ00x1 + λ00)},

X =
[

λ00−λ01
(λ11−λ01+λ00)

λ11
(λ11−λ01+λ00)

]
For a game with payoff matrix Bv define P2’s security level denoted by v∗2 as follows

v∗2 = min
(y1,y2)∈T

max
1≤i≤2

Bv(i)Y
T = min

(y1,y2)∈T
max
1≤i≤2

{
λ11y1, λ01y1 + λ00y2

}
= min

0≤y1≤1
max
1≤i≤2

{
λ11y1, (λ01 − λ00)y1 + λ00

}

y1 =
λ00

(λ11 − λ01 + λ00)
, y2 =

λ11 − λ01
(λ11 − λ01 + λ00)

The expected payoff of the vertical co-operation team v∗ = XBvY
T , where v∗ = v∗1 = v∗2 ,

Bv =

[
λ11 0
λ01 λ00

]
, X =

[
λ00−λ01

(λ11−λ01+λ00)
λ11

(λ11−λ01+λ00)

]
, Y =

[
λ00

(λ11−λ01+λ00)
λ11−λ01

(λ11−λ01+λ00)

]
Thus

v∗ =
[

λ00−λ01
(λ11−λ01+λ00)

λ11
(λ11−λ01+λ00)

] [
λ11 0
λ01 λ00

][ λ00
(λ11−λ01+λ00)

λ11−λ01
(λ11−λ01+λ00)

]

=
[
λ11(λ00−λ01)
(λ11−λ01+λ00) + λ11λ01

(λ11−λ01+λ00)
λ11λ00

(λ11−λ01+λ00)

] [ λ00
(λ11−λ01+λ00)

λ11−λ01
(λ11−λ01+λ00)

]
=
[{

λ11(λ00−λ01)
(λ11−λ01+λ00) + λ11λ01

(λ11−λ01+λ00)

}
λ00

(λ11−λ01+λ00) + λ11λ00
(λ11−λ01+λ00)

λ11−λ01
(λ11−λ01+λ00)

]
=
λ200λ11 − λ01λ00λ11 + λ211λ00

(λ11 − λ01 + λ00)2

=
λ00λ11

(λ11 − λ01 + λ00)

So, h∗ = λ00λ11
λ11−λ10+λ00 and v∗ = λ00λ11

(λ11−λ01+λ00) is the security point of horizontal and vertical degrees at
a node of the supply chain.
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The capacity of a node to deal with the costs of links in the network is fixed. Hence, two teams of
players may bargain to decide the horizontal degree and vertical degree of a particular node. This can be
formulated as a Nash bargaining problem where the disagreement point is defined as the status quo point
(h∗, v∗). These degrees play an important role in reducing the carrying costs and ordering costs within
the supply chain. The Nash bargaining solution to this problem satisfies the following six axioms.

5. Axioms defining the Nash bargaining solution

Let (h, v) denote the Nash bargaining payoff

Axiom 1. We must have h ≥ h∗ and v ≥ v∗, i.e. each player must get at least the relevant status quo
payoff.

Axiom 2. The point (h, v) ∈ N ×N , that is, it must be a feasible point.

Axiom 3. If (h, v) is any point in N ×N , so that h ≥ h∗, v ≥ v∗, then it must be the case that h = h∗,
v = v∗. In other words, there is no point in N × N , where both players receive more. Hence, the Nash
bargaining solution is Pareto-optimal.

Axiom 4. If (h, v) ∈ T ⊂ S ⊂ N × N and (h, v) = f(T, h∗, v∗) is the solution to the bargaining
problem with the feasible set T , then for the larger feasible set S either (ho, vo) = f(S, h∗, v∗) is the
bargaining solution for S or the actual bargaining solution for S is in S − T . We assume here that the
security point is the same for T and S. So, if we have more alternatives, the new negotiated position
cannot change to one of the old possibilities.

Axiom 5. If T is an affine transformation of S, T = aS + b = ϕ(S) and (h̄, v̄) = f(S, h∗, v∗) is the
bargaining solution of S with security point (h∗, v∗), then (ah̄+ b, av̄+ b) = f(T, ah∗+ b, av∗+ b) is the
bargaining solution associated with T and security point (ah∗ + b, av∗ + b). This states that the solution
is independent of the scale or units used to measure payoffs.

Axiom 6. If the game is symmetric with respect to the players, then the bargaining solution treats the
players symmetrically. In other words, if (h, v) = f(S, h∗, v∗) and (i) If h∗ = v∗,and (ii) (h, v) ∈ S =⇒
(v, h) ∈ S, then h̄ = v̄. So, if the players are essentially interchangeable they should get the same
negotiated payoff. Binmore [1] defined the bargaining problem and its solution as below.

5.1. Nash bargaining problem

A Nash bargaining problem is simply a pair (X, d) in which X represents the set of feasible payoff pairs
(X, d) and d is a point in X representing the consequences of disagreement. Only feasible sets that
satisfy the following conditions will be considered: the set X is convex, closed and bounded above and
free disposal is allowed. In this paper, the optimal security level provides the security point (h∗, v∗) which
thus may be treated as the point of disagreement between horizontal and vertical degrees at an individual
node. This point belongs to the feasible set of payoffs. The horizontal cooperation team and vertical
cooperation team both negotiate to enhance the degree of cooperation above its security level. Now,
our objective is to obtain the optimal degree of horizontal and vertical cooperation which maximises
both degrees of cooperation. This is obtained by maximizing a non-linear expression subject to given
constraints (5), (6) and (7).

Maximize g(h, v) = (h− h∗)(v − v∗)
Subject to (h, v) ∈ S, h ≥ h∗, v ≥ v∗, h+ v ≤ 2λ11
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This can be expressed as

Maximize (h− λ00λ11
λ11 − λ10 + λ00

)(v − λ00λ11
λ11 − λ01 + λ00

) (4)

Subject to h ≥ λ00λ11
λ11 − λ10 + λ00

(5)

v ≥ λ00λ11
λ11 − λ01 + λ00

(6)

h+ v ≤ 2λ11 (7)

An alternative method to solve the above non-linear problem is described below

f(h) =

(
h− λ00λ11

λ11 − λ10 + λ00

)(
−h+ 2λ11 −

λ00λ11
λ11 − λ01 + λ00

)
=

(
h− λ00λ11

λ11 − λ10 + λ00

)(
−h+

2λ11(λ11 − λ01 + λ00)− λ00λ11
λ11 − λ01 + λ00

)
(8)

For ∂F (h)
∂h

= 0 ,we get the following optimal values for the degrees of horizontal cooperation h and
vertical cooperation v:

h =
1

2

(
2λ311 + (4λ00 − λ01 − 2λ10)λ

2
11 + (λ200 + λ01λ10 − λ10λ00 − λ01λ00)λ11

(λ11 + λ00)2 − (λ01 + λ10)(λ11 + λ00) + λ10λ01

)
(9)

v =
1

2

(
2λ311 + λ211(4λ00 − 3λ01 − 2λ10) + (3λ200 − 3λ01λ00 − 3λ00λ10 + 3λ10λ01)λ11

(λ11 + λ00)2 − (λ01 + λ10)(λ11 + λ00) + λ10λ01

)
(10)

After substituting the values from equations (9) and (10) into equations (5) and (6), we conclude that the
parameters λ00, λ10, λ01 and λ11 should satisfy the following conditions to obtain a feasible solution for
the optimal degree of horizontal and vertical cooperation.

Theorem 3. If h, v are optimal degrees of horizontal and vertical cooperation, then the parameters
λ00, λ10, λ01 and λ11, which measure the average number of each type of link with a node, must satisfy
the following two conditions for horizontal and vertical cooperation, respectively.

(a) 2λ11
3 + (4λ00− λ01− 4λ10)λ11

2 + (2λ10λ01 + λ00
2 + 2λ01λ10 + 2λ10

2− 5λ00λ10)λ11 + (λ00λ10
2−

λ01λ10
2 − λ003 + λ01λ00

2) ≥ 0

(b) 2λ311 + (4λ00 − 5λ01 − 2λ10)λ
2
11 + (3λ00

2 − 8λ01λ00 − 3λ00λ10 + 5λ10λ01 + 3λ01
2)λ11 + (λ00

3 −
4λ01λ00

2 − λ002λ10 + 3λ00λ01
2 − 3λ01

2λ10 + 4λ00λ10λ01) ≥ 0

Proof. From the axioms for the Nash bargaining solution, if (h, v) ∈ N × N , then it must satisfy
h ≥ h∗, v ≥ v∗. Substituting in the values of h and h∗, v and v∗, we obtain

1

2

(
2λ311 + (4λ00 − λ01 − 2λ10)λ

2
11 + (λ200 + λ01λ10 − λ10λ00 − λ01λ00)λ11

(λ11 + λ00)2 − (λ01 + λ10)(λ11 + λ00) + λ10λ01

)
≥ λ00λ11
λ11 − λ10 + λ00

(11)
1

2

(
2λ311 + λ211(4λ00 − 3λ01 − 2λ10) + (3λ200 − 3λ01λ00 − 3λ00λ10 + 3λ10λ01)λ11

(λ11 + λ00)2 − (λ01 + λ10)(λ11 + λ00) + λ10λ01

)
≥ λ00λ11
λ11 − λ01 + λ00

(12)

After solving (11) and (12), we obtain the two conditions (a) and (b) of the theorem. �
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5.2. Nash bargaining solutions

A bargaining solution is a function F : B −→ R2 with the property that F (X, d), where d = (d1, d2)
is in the set X . One interprets F (X, d) as the payoff pair on which rational players will agree when
confronted with the bargaining problem (X, d). For an extension of the Nash bargaining solution, take
α ≥ 0 and β ≥ 0 with α + β = 1. The function G : B −→ R2 which maximizes the expression
(x−d1)α(y−d2)β corresponds to the generalized Nash Bargaining solution with the players’ bargaining
powers being α and β, respectively.

6. Application of the Nash bargaining solution to an EOQ model

Suppose that the cost of forming a horizontal link is C link
H and the cost of forming a vertical link is C link

V .
Hence, the total linking costs (to initiate both horizontal and vertical cooperation) is (hC link

H + vC link
V ).

In order for links to be stable, C link
V < C0 and C link

H < Ch. We know that if the ith node cooperates with
h nodes at the same level, then the carrying costs (which include holding costs, transportation costs etc.)
are reduced and if the ith node cooperates with v nodes at a different level, then the ordering costs (which
include advertisement costs, setup costs, communication costs etc.) are also reduced.

The status quo payoff point (h, v) has a significant effect in reducing the total inventory costs. We
have taken as an example the total cost function in an inventory model with shortage. In a supply chain,
the optimal amount of a good passing through a particular node and the mean time for which stock is
held at that node, are important when managing the flow of a commodity at that node.

6.1. Assumptions of EOQ model

Figure 1. Illustration of a cycle: D– quantity demanded, Q–instantaneous replenishment quantity, S–shortage in a cycle

Our EOQ model, as illustrated in Figure 1, deals with the shortage of stock at a node. Shortage time t
is measured as a fraction of the cycle length, i.e., 0 ≤ t ≤ 1. The total number of orders in one cycle is
D
Q

. The average amount of the commodity held is (Q−S)2
2Q

. The average shortage of the commodity is S2

2Q
.

Hence, according to the well-known formula of the total cost function, when the node has no cooperation
in terms of degrees, the total cost is given below

TC = C0
D

Q
+ Ch

(Q− S)2

2Q
+ Cs

S2

2Q
(13)

However, when the concepts of horizontal and vertical cooperation are used to manage the commodity
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at an individual node of the supply chain, we obtain the following reduced form of the cost function

TC =
C0

v

D

Q
+
Ch
h

(Q− S)2

2Q
+
(
hC link

H + vC link
V

)
+

Cs
(h+ v)

S2

2Q
(14)

In equation (14), the ordering cost is uniformly distributed according to the degree of vertical cooper-
ation, v. So, C0

v
becomes the ordering cost per unit order. Similarly, the cost for holding the commodity

is also uniformly distributed according to the degree of horizontal cooperation, h. So, Ch

h
becomes the

holding cost per unit commodity. The shortage of the commodity occurs at a supply chain node that pos-
sesses a total degree of cooperation (h+v). It is assumed that the shortage costs are uniformly distributed
over the (h+v) degrees of cooperation. Hence, Cs

(h+v)
is the shortage cost of the commodity per unit link.

To obtain the stationary point of the total cost function, we have to take partial derivatives of TC with
respect to Q and S and equate them to zero, as described in the following equations:

∂TC

∂Q
= − C0D

vQ2
+
Ch(2Q(Q− S)− (Q− S)2)

2hQ2
− CsS

2

2(h+ v)Q2
= 0

⇒C0D

v
+

CsS
2

2(h+ v)
=
Ch(Q

2 − S2)

2h

⇒C0D

v
+

(
Cs

2(h+ v)
+
Ch
2h

)
S2 =

ChQ
2

2h

⇒C0D

v
=
ChQ

2

2h
−
(

Cs
2(h+ v)

+
Ch
2h

)
S2 (15)

∂TC

∂S
= − 2Ch

h
· (Q− S)

2Q
+

2SCs
2Q(h+ v)

= 0

⇒S =
ChQ
h

Ch

h
+ Cs

(h+v)

=
ChQ(h+ v)

(Ch(h+ v) + Csh)

Substituting the appropriate value of S in equation (15), we obtain

C0D

v
=
ChQ

2

2h
−
(

Cs
2(h+ v)

+
Ch
2h

)(
ChQ(h+ v)

{Ch(h+ v) + Csh}

)2

⇒ C0D

v
= Q2

[Ch
2h
−
(

Cs
2(h+ v)

+
Ch
2h

)(
Ch(h+ v)

Ch(h+ v) + Csh

)2 ]

⇒ Q =

√√√√√ C0D
v

Ch

2h
−
(

Cs

2(h+v)
+ Ch

2h

)(
Ch(h+v)

Ch(h+v)+Csh

)2 =

√√√√ C0D
v

Ch(h+v)(Ch(h+v)+Csh)2−(Csh+Ch
2(h+v)2)

2h(h+v)(Ch(h+v)+Csh)2

⇒ Q =

√
(Ch(h+ v) + Csh)2hC0D

vCh[(Ch(h+ v) + Csh)− Ch(h+ v)]
=

√
2C0D(Ch(h+ v) + Csh)

vChCs

Therefore,

Q∗ =

√
2C0D(Ch(h+ v) + Csh)

vChCs
(16)
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and

S∗ =
ChQ

∗(h+ v)

(Ch(h+ v) + Csh)
= (h+ v)

√
2C0DCh

Csv(Ch(h+ v) + Csh)
(17)

Substituting the appropriate values of h and v from equations (9) and (10) into (16) and (17), the optimal
total cost is

TC∗ =
C0

v

D

Q∗
+
Ch
h

(Q∗ − S∗)2

2Q∗
+
(
hC link

H + vC link
V

)
+

Cs
(h+ v)

S∗2

2Q∗
(18)

6.2. Example

In a complex supply chain network, suppose that a node satisfies all the assumptions of Sections 2 and 6.1.
This node faces a demand of D = 100 units of a good, where the ordering cost per item is Co = Rs. 100
and the holding cost per item is Ch = Rs. 90. The shortage cost per item Cs = Rs. 200 is a penalty
cost that takes into account a loss of goodwill among customers. The cost of forming a horizontal link is
C link
H = Rs. 10 and the cost of forming a vertical link C link

V = Rs. 5. In the general interaction between
the node considered and other nodes, the average number of successful meetings to form horizontal
cooperation with nodes at the same level (λ10 = 6) and the average number of successful meetings to
form vertical cooperation between nodes at different levels (λ01 = 3). The average number of links
where no effort was made to initiate cooperation is λ00 = 2 nodes. The average number of successful
meetings to initiate both horizontal and vertical cooperation is λ11 = 9.

(i) Derive the security point for the degree of horizontal and vertical cooperation.

(ii) Calculate the optimal degree of horizontal and vertical cooperation under these fixed linking costs.

(iii) Find the optimal number of units of the good to be ordered by the node per cycle.

(iv) Calculate the optimal shortage per cycle for this node.

(v) Derive the Economic Order Quantity at the node.

(vi) Evaluate the optimal total cost of inventory at the node.

6.2.1. Solution

The parameters considered are C0 = Rs. 100, Ch = Rs. 90, Cs = Rs. 200, C link
H = Rs. 10, C link

v =
Rs. 5, D = 100 units, λ11 = 9, λ00 = 2, λ10 = 6 and λ01 = 3. First, we have to check the following
conditions ensuring the feasibility of the optimal solution, (h, v):

(a) 2λ11
3 + (4λ00− λ01− 4λ10)λ11

2 + (2λ10λ01 + λ00
2 + 2λ01λ10 + 2λ10

2− 5λ00λ10)λ11 + (λ00λ10
2−

λ01λ10
2 − λ003 + λ01λ00

2) = 679 ≥ 0

(b) 2λ311 + (4λ00 − 5λ01 − 2λ10)λ
2
11 + (3λ00

2 − 8λ01λ00 − 3λ00λ10 + 5λ10λ01 + 3λ01
2)λ11 + (λ00

3 −
4λ01λ00

2 − λ002λ10 + 3λ00λ01
2 − 3λ01

2λ10 + 4λ00λ10λ01) = 296 ≥ 0

We used a program written in C++ language to show that the set λ11 = 9, λ00 = 2, λ10 = 6, λ01 = 3
satisfy the above conditions. We then proceed to answer the questions formulated above.

(i) The security point of the degrees of horizontal and vertical cooperation (h∗, v∗) is calculated as
h∗ = λ00λ11

λ11−λ10+λ00 = 3.6 degrees, v∗ = λ00λ11
(λ11−λ01+λ00) = 2.25 degrees.
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(ii)

h =
1

2

(
2λ311 + (4λ00 − λ01 − 2λ10)λ

2
11 + (λ200 + λ01λ10 − λ10λ00 − λ01λ00)λ11

(λ11 + λ00)2 − (λ01 + λ10)(λ11 + λ00) + λ10λ01

)
= 11.59 degrees,

v =
1

2

(
2λ311 + λ211(4λ00 − 3λ01 − 2λ10) + (3λ200 − 3λ01λ00 − 3λ00λ10 + 3λ10λ01)λ11

(λ11 + λ00)2 − (λ01 + λ10)(λ11 + λ00) + λ10λ01

)
=6.41 degrees.

(iii) Q∗ =
√

2C0D(Ch(h+v)+Csh)
vChCs

= 26.12 units.

(iv) S∗ = (h+ v)
√

2C0DCh

Csv(Ch(h+v)+Csh)
= 10.75 units.

(v) TC∗ =
C0

v

D

Q∗
+
Ch
h

(Q∗ − S∗)2

2Q∗
+
(
hC link

H + vC link
V

)
+

Cs
(h+ v)

S∗2

2Q∗
= Rs. 267.34.

6.2.2. Sensitivity analysis

Sensitivity to λ10. C0 = Rs. 100, Ch = Rs. 90, Cs = Rs. 200 and C link
H = Rs. 10 , C link

V = Rs. 5,
D = 100 units, λ00 = 100 links, λ01 = 500 links, λ11 = 1000 links.

Table 1. Sensitivity to λ10
λ10 TC∗ Q∗ S∗ h∗ v∗ h v
150 17106.42 29.85 11.57 105.26 166.67 1421.05 578.95
300 17188.67 30.39 11.70 125.00 166.67 1437.50 562.50
450 17308.88 31.22 11.90 153.85 166.67 1461.54 538.46
600 17501.22 32.66 12.25 200.00 166.67 1500.00 500.00
750 17858.45 35.80 13.04 285.71 166.67 1571.43 428.57

From Table 1, we may conclude that λ10 has a positive effect on TC∗, Q∗, S∗ and h. However, it has
a negative effect on the optimal degree of vertical cooperation v.

Sensitivity to λ01. C0 = Rs. 100, Ch = Rs. 90, Cs = Rs. 200 and C link
H = Rs. 10, C link

V = Rs. 5,
D = 100 units, λ00 = 100 links, λ10 = 500 links, λ11 = 1000 links.

Table 2. Sensitivity to λ01
λ01 TC∗ Q∗ S∗ h∗ v∗ h v
150 15571.18 22.48 10.04 166.67 105.26 1114.04 885.96
300 16146.88 24.76 10.47 166.67 125.00 1229.17 770.83
450 16988.32 29.11 11.40 166.67 153.85 1397.44 602.56
600 18334.78 41.37 14.50 166.67 200.00 1666.67 333.33
625 18641.94 46.34 15.87 166.67 210.53 1728.07 271.93
650 h ≥ h∗ is true but v ≥ v∗ is not true

From Table 2, TC∗, Q∗, S∗, h and v∗ are increasing in λ01, but the optimal degree of vertical co-
operation v is decreasing in λ01.
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Sensitivity to λ00. C0 = Rs. 100, Ch = Rs. 90, Cs = Rs. 200 and C link
H = Rs. 10, C link

V = Rs. 5,
D = 100 units, λ01 = 400 links, λ10 = 600 links, λ11 = 1000 links.

Table 3. Sensitivity to λ00
λ00 TC∗ Q∗ S∗ h∗ v∗ h v
100 16786.83 27.93 11.14 200.00 142.86 1357.14 642.86
150 16743.53 27.69 11.08 272.73 200.00 1348.48 651.52
200 16667.77 27.28 10.99 333.33 250.00 1333.33 666.67
250 16573.49 26.79 10.89 384.62 294.12 1312.48 685.52
300 16469.32 26.27 10.78 428.57 333.33 1293.33 706.35

From Table 3, we conclude that TC∗, Q∗, S∗, h are decreasing in λ00. However, h∗, v∗ and v are
increasing in λ00.

Sensitivity to λ11. C0 = Rs. 100, Ch = Rs. 90, Cs = Rs. 200 and C link
H = Rs. 10, C link

V = Rs. 5,
D = 100 units, λ00 = 100 links, λ01 = 400 links, λ10 = 600 links.

Table 4. Sensitivity to λ11
λ11 TC∗ Q∗ S∗ h∗ v∗ h v
800 14268.29 35.57 12.98 266.67 160.00 1253.33 346.67
900 15470.05 30.39 11.70 225.00 150.00 1293.75 506.25

1000 16786.83 27.93 11.14 200.00 142.86 1333.33 642.86
1098 18134.54 26.50 10.83 183.61 137.59 1430.71 765.29
1099 h ≥ h∗, v ≥ v∗ are correct but (h+ v) ≤ 2λ11 is incorrect
1100 h ≥ h∗, v ≥ v∗ are correct but (h+ v) ≤ 2λ11 is incorrect
1101 h ≥ h∗, v ≥ v∗ are correct but (h+ v) ≤ 2λ11 is incorrect
1102 18190.36 26.46 10.82 183.06 137.41 1433.86 770.12
1200 19572.31 25.51 10.62 171.43 133.33 1514.29 885.71

From Table 4, we conclude that TC∗, h and v are increasing in λ11. However, Q∗, S∗, h∗ and v∗ are
decreasing in λ11.

7. Conclusion

The whole effort of this paper has been to establish the relationship between the cost and the degree of
cooperation at a node of a supply chain. We have also been able to solve the problem of how much
of a commodity to order at a node in terms of the degree of horizontal and vertical co-operation. The
bargaining problem induced at a node between two intrinsic teams of players regarding the degrees of
horizontal and vertical cooperation has been solved and this paves a way to find an optimal degree. The
innovative concept of the optimal degree of horizontal and vertical co-operation has been employed to
determine the economic order quantity and its corresponding optimal cost. The main observations of the
sensitivity analysis are that λ01, λ10 are positively related to TC∗, Q∗, S∗ and h, but has the opposite
effect on the optimal degree of vertical cooperation v. However, λ11 is negatively related to Q∗, S∗, h∗

and v∗, while having a positive effect on TC∗, h and v. Finally, λ00 has a negative effect on TC∗, Q∗,
S∗, h but has a positive effect on h∗, v∗ and v . These results are very helpful when taking managerial
decisions at a node of a complex supply chain network.
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