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Abstract

This paper considers a four-dimensional multi-objective multi-item transportation problem (4DMOMITP), where all the pa-
rameters are regarded as uncertain variables. In this paper, three mathematical models, namely expected value model (EVM),
optimistic value model (OVM) and dependent optimistic-constrained model (DOCM), are discussed for the uncertain model
of 4DMOMITP. These models are converted into their corresponding deterministic forms using different ranking criteria from
uncertainty theory. These deterministic models are then solved by using the Lingo 18.0 software, utilizing three different
classical approaches for obtaining a solution. A numerical example is given to illustrate the application of the model and
the solution algorithm. A sensitivity analysis for the OVM and DOCM models has also been performed with respect to the
confidence levels.
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1. Introduction

In today’s world, transportation plays a major role in the daily life of human beings. It is necessary
for things to be moved around and as transportation systems have developed over time, the speed and
efficiency of these systems have improved drastically. To model situations involving the transportation
of goods, the transportation problem (TP) was introduced by Hitchock [13] in 1941. The objective is to
transfer goods from available source centres to destination centres such that the total transportation cost
is minimized. The transportation model takes into account restrictions in the form of natural constraints.
These constraints are generally considered for handling the two main features of TP, namely: the avail-
ability of sources (source constraints) and demand from consumers (demand constraints). However, in
a real system, we always deal with other constraints, e.g. regarding the type of the product or the mode
of transportation. For handling such cases, the classical TP can be extended to the solid transportation
problem (STP), which deals with an additional constraint based on transportation mode (conveyance),
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besides the two key constraints of the classical TP. STP was first presented by Schell [33] and a proce-
dure for solving it was developed by Haley [12] in 1962. STP has gained an immense amount of interest
among various researchers in the last few years.

Since most industrial problems require the consideration of multiple conflicting objectives simulta-
neously rather than only a single objective, multi-objective transportation problems (MOTPs) were in-
troduced. These treat all the objectives simultaneously. Zimmermann [39] gave a fuzzy programming
technique to solve MOTPs. In STP, it is assumed that a single homogeneous product is to be transported
from various sources to destinations, but there are situations in which a company produces two or more
products at a source. Due to this, the TP was extended to the multi-item transportation problem (MITP).
When STP is studied along with multiple objectives and multiple items, it is known as a multi-objective
multi-item solid transportation problem (MOMISTP). When dealing with practical situations, it is often
difficult to evaluate the precise/actual values of the parameters involved, such as transportation cost, de-
livery time, the capacity of the suppliers and demand of the consumers and conveyance capacities. These
parameters can fluctuate due to several factors, such as uncertainty in judgement, weather conditions
or incomplete information. Therefore, to deal with an imprecise environment, different theories were
developed , e.g. fuzzy set theory [36], probability theory [17], interval theory [24]. In 2007, Liu [20]
introduced another way to represent imprecise data, known as uncertainty theory. This theory is based on
human’s degree of belief in various scenarios and is used to appropriately evaluate the personal degree
of beliefs of experts in terms of an uncertainty measure. In recent years, there have been a wide num-
ber of real-world applications based on such models of imprecise environments. Erik Kropat et al. [18]
studied the concept of fuzzy target environment networks with fuzzy-regression models by considering
fuzzy data sets. Erik Kropat et al. [19] also went beyond traditional stochastic approaches and proposed
semi-algebraic gene-environment networks that rely on data originating from different disciplines, such
as chemistry and biology. Haripriya et al. [1] studied an economic production quantity model for deteri-
orating items with time-dependent demand and shortages including partially back-ordered demand with
a cloudy fuzzy environment. Roy et al. [30] considered a probabilistic inventory model for deteriorating
items with a price discount on back-orders. Lotfi et al. [23] considered interdependent demand in the
two-period newsvendor problem with probabilistic demand.

In the field of transportation problems, plenty of research work has already been carried out with
various models of imprecise environments, such as fuzzy theory, probability theory or interval theory.
In 1963, Williams [35] constructed a model for TP in a stochastic environment, where the undetermined
parameters were assumed to be random variables. Cerulli et al. [3] and D’Ambrosio et al. [9] have studied
TP models with variables considered as interval numbers. Jimenez and Verdegay [14] studied STP with
two kinds of indeterminacy in the data by considering interval STP and fuzzy STP. Ojha et al. [26]
proposed an entropy-based STP under a fuzzy environment. Pratihar et al. [27] gave a modified version
of Vogel’s approximation method for a fuzzy transportation problem with interval type-2 fuzzy sets.
Muthuperumal et al. [25] provided an algorithmic approach to solving unbalanced triangular fuzzy TP.

Probability theory is applicable when we can derive a probability distribution very close to the actual
frequencies observed and to obtain such a distribution, we must have an adequate sample size. However,
under certain circumstances, we might face problems in accessing historical data and have no samples
available. In such situations, we need to employ experts in a related domain to estimate the degree of
belief for a range of possible scenarios. However, a number of surveys have found that humans generally
estimate a much wider scope of values for parameters than occur in reality. This means that degrees
of belief deviate a lot from actual frequencies. Thus, degrees of belief and probability distributions
cannot be treated equivalently, otherwise some absurd situation may arise. As a result, in 2007 Liu [20]
presented a theory called uncertainty theory to handle the degree of belief using mathematical concepts.
In 2009, Liu [21] introduced the theory of uncertain programming. A wide range of applications of
uncertain programming has been introduced in various fields of operations research. In 2012, Sheng
and Yao [34] examined TP in an uncertain environment treating all the variables as uncertain variables,
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instead of random variables or fuzzy variables. Furthermore, STP formulated as an expected constrained
programming model in an uncertain environment was solved by Cui and Sheng [7]. Guo et al. [10]
considered a TP that took into account costs as uncertain variables and supply capacity under a random
environment. Chen et al. [5] proposed an entropy based STP in an uncertain environment. Recently,
Zhao and Pan [38] generalized models of transportation under an uncertain environment by proposing
a new transportation model with transfer costs in which all the variables, including transfer costs, are
assumed to be uncertain variables.

Generally, the mathematical model of TP does not consider the possibility of choosing the paths or
routes between the sources and destinations. In real life, different routes or paths are available for travel
between sources and destinations. In transportation, such choices play a vital role, and if the possible
routes are considered, as well as the source-destination-conveyance constraints, in STP, then it is known
as the four-dimensional TP (4DTP). Halder et al. [11] solved a four dimensional fixed charge MITP
in crisp and fuzzy environments. Bera et al. [2] formulated a 4D multi-item TP with a budget con-
straint under rough and fuzzy intervals. Recently, Samanta et al. [32] presented a novel multi-objective
multi-item 4DTP in an intuitionistic fuzzy environment. Sahoo et al. [31] established a four-dimensional
multi-objective multi-item TP using the GP technique. Revathi et al. [29] considered a four-dimensional
multi-objective multi-item TP with vehicle costs under an uncertain environment. A literature survey of
transportation problems under uncertainty is presented in Table 1. In fact, a core issue in such trans-
portation problems is the ordering (ranking) of the uncertain variables. Therefore, to tackle the uncertain
model, Liu [22] introduced four ranking criteria to fix this issue. These four criteria are: the expected
value criterion, the optimistic value criterion, the pessimistic value criterion and the chance-criterion.
To the best of our knowledge, in the available literature the transportation problem has been addressed
using the expected value criterion and the chance criterion to transform the model under uncertainty into
a deterministic form, but no one has yet used the optimistic value criterion to deal with such TPs. Hence,
this paper aims to solve an uncertain four-dimensional MOMITP (4DUMOMITP) using the expected and
optimistic value criteria along with the chance-criterion. Also, Charnes and Cooper’s transformation [4]
has been applied to convert the fractional objectives in a deterministic DOCM model into linear form.

Table 1. Review of existing literature and proposed work applying uncertainty theory to transportation problems

Author name Dimension Item Objective Ranking criteria used
EVC OVC CC

Sheng & Yao [34] 2 single single × ×
Zhao et al. [38] 2 single single × ×
Kakran & Dhodiya [16] 2 single multi ×
Cui & Sheng [7] 3 single single × ×
Zhang et al.[37] 3 single single ×
Chen et al. [6] 3 single multi ×
Dalman [8] 3 multi multi × ×
Kakran & Dhodiya [15] 3 multi multi × ×
Sahoo et al. [31] 4 multi multi ×
Revathi et al. [29] 4 multi multi ×
Proposed work 4 multi multi

The remaining sections of this paper are as follows. Section 2 focuses on some key concepts in un-
certainty theory that are required for this paper’s study. The mathematical description of 4DMOMITP is
given in Section 3, and the model for 4DMOMITP under uncertainty with its respective EVM, OVM, and
DOCM models, is given in Section 4. The deterministic models for EVM, OVM and DOCM obtained
after the corresponding transformations are provided in Section 5 which employs uncertainty theory. The
following Section 6 describes Charnes and Cooper’s transformations for converting the DOCM into its
linear form, and Section 7 introduces the solution methodologies for solving the 4DMOMITP. Section 8
contains a numerical illustration of the application of these models. The sensitivity of the models to con-
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fidence levels is examined in Section 9. Section 10 displays the obtained results, as well as a comparison
to other methods. Finally, the last section presents a conclusion and overall summary of the paper.

2. Preliminaries

In this section, we introduce some essential definitions and notions about uncertainty theory.

Definition 1 (Liu [20])). A function M: L→ [0, 1] (where L is a σ-algebra over any non-empty set
Ω), is known as an uncertain measure if it satisfies the stated three axioms

• Axiom 1: M{Ω} = 1.

• Axiom 2: M{Λ}+ M{Λc} = 1, for event Λ ∈ L.

• Axiom 3: M
{ ∞⋃
j=1

Λj

}
≤

∞∑
j=1

M{Λj} for any countable sequence of events {Λj}.

Here, (Ω,L,M) is called an uncertainty space.

Definition 2 (Liu [20]). An uncertain variable is a measurable function ζ from (Ω,L,M) to the set
R of real numbers such that {ζ ∈ B

}
is an event for any Borel set B of real numbers.

Definition 3 (Liu [20]). For any uncertain variable ζ , the uncertainty distribution denoted by Ψ :
R→ [0, 1] is defined as Ψ(y) = M{ζ ≤ y}, y ∈ R.

Definition 4 (Liu [20]). An uncertain variable ζ with Ψ(y) defined as

Ψ(x) =


0 if y ≤ p
y−p

2(q−p) if p ≤ y ≤ q
y+r−2q
2(r−q) if q ≤ y ≤ r

1 if y ≥ r

is called a zigzag uncertain variable, denoted by Z(p, q, r), p, q, r ∈ R and p < q < r.

Definition 5 (Liu [20]). The inverse uncertainty distribution function of Z(p, q, r), denoted by Ψ−1,
is given by

Ψ−1(β) =

{
(1− 2β)p+ 2βq if β < 0.5

(2− 2β)q + (2β − 1)r if β ≥ 0.5

Theorem 1 (Liu [20]). The expected value of an uncertain variable ζ , if it exists, is given by

E[ζ] =

∫ 1

0

Ψ−1(β)dβ

For a zigzag uncertain variable Z(p, q, r), this value is given by E[ζ] =
p+ 2q + r

4
.
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Theorem 2. Consider non-negative decision variables y1, y2, . . . , yn and ζ1, ζ2, . . . , ζn, representing
independent zigzag uncertain variables Z(p1, q1, r1), Z(p2, q2, r2), . . . , Z(pn, qn, rn), respectively.

When f̄ ∈

[
n∑
j=1

pjyj,

n∑
j=1

qjyj

]
, then M

{
n∑
j=1

ζjyj ≤ f̄

}
=

f̄ −
n∑
j=1

pjyj

2
n∑
j=1

(qj − pj)yj

When f̄ ∈

[
n∑
j=1

qjyj,

n∑
j=1

rjyj

]
, then M

{
n∑
j=1

ζjyj ≤ f̄

}
=

f̄ +
n∑
j=1

(rj − 2qj)yj

2
n∑
j=1

(rj − qj)yj

The uncertain measure is 0, if f̄ lies to the left side of the interval [
∑n

j=1 pjyj,
∑n

j=1 qjyj] and 1, if f̄
is to the right side of the interval [

∑n
j=1 qjyj,

∑n
j=1 rjyj].

Definition 6 (Liu [20]). The β-optimistic and β-pessimistic values of ζ are defined by

ζsup(β) = sup{t|M{ζ ≥ t} ≥ β} = Ψ−1(1− β), β ∈ (0, 1]

ζinf(β) = inf{t|M{ζ ≤ t} ≥ β} = Ψ−1(β), β ∈ (0, 1]

For example, if we have a zigzag uncertain variable Z(p, q, r), then

ζsup(β) =

{
2βq + (1− 2β)r if β < 0.5

(2β − 1)p+ (2− 2β)q if β ≥ 0.5
(1)

ζinf(β) =

{
(1− 2β)p+ 2βq if β < 0.5

(2− 2β)q + (2β − 1)r if β ≥ 0.5
(2)

Theorem 3. Let ζ be an uncertain variable and β ∈ (0, 1]. Then we have

(a) ζinf(β) is an increasing and left-continuous function of β,

(b) ζsup(β) is a decreasing and left-continuous function of β.

Theorem 4. If f : Rn → R is a continuous and strictly increasing function, then ζ = f(ζ1, ζ2, . . . , ζn)
is an uncertain variable and

(a) ζsup(β) = f
(
ζ1 sup(β), ζ2 sup(β), . . . , ζn sup(β)

)
,

(b) ζinf(β) = f
(
ζ1 inf(β), ζ2 inf(β), . . . , ζn inf(β)

)
.

Theorem 5. Let ζ and η be uncertain variables and β ∈ (0, 1], then

(aζ)sup(β) =

{
aζsup(β) if a ≥ 0

aζinf(β) if a < 0
and (aζ)inf(β) =

{
aζinf(β) if a ≥ 0

aζsup(β) if a < 0

One of the major issues in a model involving uncertainty is the ranking of the uncertain variables,
since uncertain variables do not always follow a natural order in an uncertain environment. For any two
uncertain variables ζ and η, Liu [21] presented four ranking criteria:
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• Expected value criterion: we say ζ < η iff E[ζ] < E[η].

• Optimistic value criterion: we say ζ < η iff ζsup(β) < ηsup(β), for some β ∈ (0, 1].

• Pessimistic value criterion: we say ζ < η iff ζinf(β) < ηinf(β), for some β ∈ (0, 1].

• Chance-criterion: we say ζ < η iff M{ζ ≥ t̄} <M{η ≥ t̄} for some predefined level t̄.

3. Description of the problem

A mathematical description of the four-dimensional multi-objective multi-item transportation problem is
expressed by a description of the available sources, destinations, the vehicles used, items to be conveyed
and the set of accessible routes. Let there be m sources, n destinations, K vehicles, P items and R routes
in the four-dimensional multi-objective multi-item transportation problem. The 4DMOMITP model can
be mathematically formulated as shown below.

min Zt =
∑
i,j,k,r,p

(ctpijkrx
p
ijkr) ∀t

subject to
∑
j,k,r

xpijkr ≤ api ∀i, ∀p∑
i,k,r

xpijkr ≥ bpj ∀j,∀p∑
i,j,p

xpijkr ≤ ekr ∀k,∀r

xpijkr ≥ 0

(3)

The notation used in this model are as follows: m defines the number of available sources, n defines
the number of available destinations,K defines the number of available vehicles,R defines the number of
available routes, P defines the number of items to be transported, S defines the number of objectives, api
defines the quantity available of item p at source i, bpj defines the quantity of item p required at destination
j and ekr defines the maximum capacity of vehicle k during transportation along route r. ctpijkr is the
penalty cost (representing a coefficient matrix for t different objectives) for delivering one unit of item p
from source i to destination j by vehicle k using route r for objective t and xpijkr is the number of units
of item p transported from source i to destination j by vehicle k along route r. We have also used the
notation ∀ t: t = 1, 2, . . . , S, ∀ i: i = 1, 2, . . . ,m, ∀ j: j = 1, 2, . . . , n, ∀ k: k = 1, 2, . . . , K, ∀ r:
r = 1, 2, . . . , R, ∀ p: p = 1, 2, . . . , P , throughout this paper.

In a large majority of transportation systems, it is not the case that one can accurately estimate all
the related parameters. In reality, decision-makers may encounter various uncertainties in the applica-
tion of TP, such as the availability of raw materials at the sources, demand at the destinations, and unit
transportation costs, due to a variety of uncontrollable factors. These factors may arise due to weather
conditions, road conditions or the impossibility of accurately estimating total demand for a newly re-
leased product on the market. Considering the fact that there may be no historical reference available
about a transportation plan, we take into account the uncertainty theory introduced by Liu [20]. So,
keeping all these things in mind, we introduce a model for 4DMOMITP involving uncertainty which
considers all the parameters, like api , b

p
j , ekr, c

tp
ijkr as uncertain variables ãpi , b̃

p
j , ẽkr and ζtpijkr, respectively.

4. Mathematical model involving uncertainty

The model presented in (4) is a mathematical expression of the 4DMOMITP involving uncertain variables
ãpi , b̃

p
j , ẽkr and ζtpijkr in the place of crisp values as seen in model (3). Model (4) has more natural applica-

tions to real-world scenarios than the crisp model (3), because of the presence of uncertain parameters in
the transportation plan.
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min Zt(x; ζ) =
∑
i,j,k,r,p

ζtpijkrx
p
ijkr ∀t

subject to
∑
j,k,r

xpijkr ≤ ãpi ∀i,∀p∑
i,k,r

xpijkr ≥ b̃pj ∀j,∀p∑
i,j,p

xpijkr ≤ ẽkr ∀k, ∀r

xpijkr ≥ 0

(4)

The model involving uncertainty (4) cannot be solved directly with any of the primary methods. One of
the four ranking criteria proposed by Liu [22] must be applied first, as discussed in Section 2.

4.1. Expected value model

The basic idea of the expected value model (EVM) is to find an optimal solution to the problem by con-
sidering the expected values of the uncertain variables in the objective function and constraints. Mathe-
matically, the EVM model for 4DUMOMITP can be stated as follows:

min E[Zt] = E

[ ∑
i,j,k,r,p

ζtpijkrx
p
ijkr

]
∀t

subject to E

[∑
j,k,r

xpijkr − ã
p
i

]
≤ 0 ∀i, ∀p

E

[∑
i,k,r

xpijkr − b̃
p
j

]
≥ 0 ∀j,∀p

E

[∑
i,j,p

xpijkr − ẽkr

]
≤ 0 ∀k,∀r

xpijkr ≥ 0

(5)

In this model, throughout this paper we will use the notation ZtE to represent the objective functions
E[Zt] formed by taking the expected values of Zt(x, ζ).

4.2. Optimistic value model

The optimistic value criterion defined for uncertain variables can also be used to develop an optimistic
value model (OVM) to deal with uncertainty in models. For model (4), the OVM is as follows:

min [Zt]sup(αt) =

[ ∑
i,j,k,r,p

ζtpijkrx
p
ijkr

]
sup

(αt) ∀t

subject to

[∑
j,k,r

xpijkr − ã
p
i

]
sup

(αpi ) ≤ 0 ∀i,∀p[∑
i,k,r

xpijkr − b̃
p
j

]
sup

(βpj ) ≥ 0 ∀j,∀p[∑
i,j,p

xpijkr − ẽkr

]
sup

(γkr) ≤ 0 ∀k,∀r

xpijkr ≥ 0

(6)
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Here αt, α
p
i , β

p
j and γkr, ∀i, j, k, r, p, t, are chosen confidence levels. In this model, throughout this paper

we will use ZtS to represent the objective functions [Zt]sup(αt) formed by taking the optimistic values of
Zt(x, ζ).

4.3. Dependent optimistic-constrained model

In the dependent-optimistic criterion model (DOCM), the basic criterion is to choose a decision which
maximizes the chance of achieving a goal. Here, we denote by f̄t the predetermined maximal cost avail-
able to optimize an uncertain measure, such that the total cost incurred does not exceed the predetermined
value f̄t. The DOCM model (7) is formulated such that the chance of carrying out the required tasks in
an uncertain environment is maximized.

max ZtM = M

{ ∑
i,j,k,r,p

ζtpijkrx
p
ijkr ≤ f̄t

}
∀t

subject to the constraints of model (6)

(7)

Since the DOCM model considers constraints based on optimistic values, the constraints used in the
model (7) are same as those in the OVM model (6). The notation ZtM is used to denote the objective
function M{Zt} based on an uncertain measure.

5. Deterministic formulations

It is worth noting that the above models contain a large number of uncertain variables. To solve the
proposed models, we must compute the expected value, optimistic value or uncertain measure. In general,
it is natural for us to convert these models into deterministic forms whenever possible, for the sake of
calculation.

5.1. Expected value model

If ãpi , b̃
p
j and ẽkr are independent uncertain variables, then model (5) is equivalent to the following model:

min ZtE =
∑
i,j,k,r,p

(
xpijkr

∫ 1

0

Ψ−1

ζtpijkr
(αt)dαt

)
∀t

subject to
∑
j,k,r

xpijkr −
∫ 1

0

Ψ−1

ãpi
(αpi )dα

p
i ≤ 0 ∀i,∀p∫ 1

0

Ψ−1

b̃pj
(βpj )dβ

p
j −

∑
i,k,r

xpijkr ≤ 0 ∀j,∀p

∑
i,j,p

xpijkr −
∫ 1

0

Ψ−1
˜ekr

(γkr)dγkr ≤ 0 ∀k,∀r

xpijkr ≥ 0

(8)

Here αt, α
p
i , β

p
j and γkr, ∀i, j, k, r, p, t, are chosen confidence levels.

5.2. Optimistic value model

The corresponding formulation of the OVM model (6) is obtained by using the basic definitions and
theorems defined in Section 2. This formulation is expressed in the following model (9):
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min ZtS =
∑
i,j,k,r,p

xpijkrΨ
−1

ζtpijkr
(1− αt) ∀t

subject to
∑
j,k,r

xpijkr −Ψ−1
ãi

(αpi ) ≤ 0 ∀i,∀p

Ψ−1

b̃j
(1− βpj )−

∑
i,k,r

xpijkr ≤ 0 ∀j,∀p∑
i,j,p

xpijkr −Ψ−1
ẽk

(γkr) ≤ 0 ∀k,∀r

xpijkr ≥ 0

(9)

The terms αt, α
p
i , β

p
j and γkr, ∀i, j, k, r, p, t, represent chosen confidence levels.

5.3. Dependent optimistic-constrained model

The DOCM model shown in model (7) corresponds to the model (10). Since the DOCM model considers
constraints based on optimistic values, these are same as the constraints used in the OVM model (9).

max ZtM = M

{ ∑
i,j,k,r,p

ζtpijkrx
p
ijkr ≤ f̄t

}
∀t

subject to the constraints of model (9)

(10)

6. Charnes and Cooper’s transformation for the DOCM model

This section describes Charnes and Cooper’s transformations [4] used for converting the linear fractional
problem (LFP) described in model (11) to the linear programming problem described in model (12).

max
p
′
x+ α

q′x+ β
subject to Ax ≤ b

x ≥ 0

(11)

Let S = {x : Ax ≤ b, x ≥ 0} be a compact set and q′x + β > 0 for each x ∈ S. Setting t = 1
q′x+β

and
y = tx, the LFP in model (11) converts into the following model:

max p
′
y + αt

subject to q
′
y + βt = 1

Ay − bt ≤ 0
y ≥ 0, t ≥ 0

(12)

Note that, if (y, t) is a feasible solution to the model (12), then t > 0 and if (ȳ, t̄) is an optimal solution
to the above linear program, then x̄ = ȳ

t̄
is an optimal solution to the fractional program.

Suppose that Ax̄ ≤ b and x̄ ≥ 0, so that x̄ is a feasible solution to LFP. To prove the optimality of
x̄, take x such that Ax ≤ b and x ≥ 0. Note that q′x + β > 0 by assumption and the vector (y, t) is a
feasible solution to LPP in model (12), where y = x

q′x+β
and t = 1

q′x+β
. Also, ȳ, t̄ is an optimal solution

to the LPP which gives p′ ȳ + αt̄ ≤ p
′
y + αt. Substituting in the values for ȳ, y and t this inequality

leads to t̄(p′x̄ + α) ≤ (p
′
x+α)

q′x+β
. This proves the result immediately when we divide the left hand side

by 1 = q
′
ȳ + βt̄. Now, if q′x + β < 0 for all x ∈ S, then letting −t = 1

q′x+β
and y = tx gives the
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following LPP:
min −p′y − αt
subject to Ay − bt ≤ 0

−q′y − βt = 1
y ≥ 0, t > 0

(13)

The form of the LPP used depends on whether q′x+ β > 0 for all x ∈ S or q′x+ β < 0 for all x ∈ S.

7. Solution methodologies

This section describes the three classical approaches: weighted sum method, minimizing distance method,
and fuzzy programming technique, used to obtain a compromise solution for multi-objective optimiza-
tion problems. These three methods will be used to find a compromise solution for the EVM, OVM and
DOCM crisp models.

7.1. Weighted sum method

The weighted sum method (WSM) converts multi-objective problems into a single objective problem by
pre-multiplying the vector of objective functions by a specified weight vector representing the relative im-
portance of each objective function to the decision-maker. This method helps achieve a Pareto-optimal
solution of a multi-objective problem by optimizing the weighted sum of objective functions. For in-
stance, the single objective model using WSM is displayed below:

min /max
S∑
t=1

wtZt

subject to the constraints of model (8) or (9) or (10)

Here, Zt is a generalized notation for the objective functions in the EVM, OVM and DOCM models.
The objective function in WSM should be minimized or maximized according to the type of individual
objective functions in any model. Also, the weights w1, w2, . . . wS are non-negative numbers such that
w1 + w2 + · · ·+ wS = 1.

7.2. Minimizing distance method

This method transforms a multi-objective problem into single objective by minimizing the sum of devia-
tion of the ideal vector from the corresponding objective functions. Here, we use the L2 norm to convert
the crisp multi-objective models EVM, OVM and DOCM into their corresponding compromise models.
The single objective model formed using minimizing distance method (MDM) is described below:

min

√√√√ S∑
t=1

(Zt − Zo
t )2

subject to the constraints of model (8) or (9) or (10)

Here, Zo
t represents the ideal values of the individual objective functions Zt in the EVM, OVM and

DOCM models.

7.3. Fuzzy programming technique

The fuzzy programming technique (FPT), introduced by Zimmerman [39], is used to obtain a solution to
multi-objective problems and its sequential steps for 4DMOMITP are described below:
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Step 1. Solve each of optimization problems derived from the deterministic models (8), (9) and (10)
by considering a single objective at a time and ignoring all of the other objectives w.r.t the given con-
straints.

Step 2. Obtain the minimum value (say Lt) and maximum value (say Ut) for each of the S objective
functions.

Step 3. Construct the exponential membership function µt(Zt) for the tth objective function defined
by:

µt(Zt) =


1 if Zt ≤ Lt
e−stψt(x) − e−st

1− e−st
if Lt < Zt < Ut

0 if Zt ≥ Ut ∀t

Here, ψt(x) = Zt−Lt

Ut−Lt
if an objective function is of the minimization type andψt(x) = Ut−Zt

Ut−Lt
if an objective

function is of the maximization type. Also, st is a non-zero shape parameter given by the decision-maker.

Step 4. Now, we formulate the fuzzy linear programming problem using the max-min operator for
the exponential membership function (mf) as:

max λ
subject to µt(Zt) ≥ λ ∀t
and the constraints of model (8), (9) or (10)with λ ≥ 0 and λ = minµt(Zt)

(14)

Here, Zt is generalized notation for each of the three objectives ZtE, ZtS, ZtM . One can form such a
single objective model for each of the three models EVM, OVM and DOCM by considering the expo-
nential mf.

Step 5. Now this converted single-objective problem is solved using the LINGO 18.0 software to obtain
a pareto-optimal solution of the 4DMOMITP problem.

8. Numerical illustration

In this section, the application of the proposed models is demonstrated with the help of the following
example of a 4DMOMITP. In this illustration, we assume two origins, three destinations, two vehicles,
two items and two routes between origins and destinations. In this problem, all the parameters, such as
transportation cost/damage cost, capacity of suppliers, demand at destinations, capacity of suppliers, are
considered as independent zigzag uncertain variables. The primary objective of the 4DMOMITP problem
is to determine the number of goods to be delivered from the sources to the destinations via the appropri-
ate routes in such a way that transportation costs and item damage costs are minimized. The data for this
4DMOMITP are listed in Tables 2–5 and the rest of the uncertain variables used are defined as follows:
ã1

1 ∼ Z(56, 58, 60), ã1
2 ∼ Z(53, 55, 57), ã2

1 ∼ Z(56, 58, 61), ã2
2 ∼ Z(52, 54, 56), b̃1

1 ∼ Z(32, 34, 36),
b̃1

2 ∼ Z(34, 36, 38), b̃1
3 ∼ Z(31, 34, 37), b̃2

1 ∼ Z(32, 34, 36), b̃2
2 ∼ Z(30, 32, 34), b̃2

3 ∼ Z(29, 32, 35),
ẽ11 ∼ Z(100, 150, 170), ẽ21 ∼ Z(130, 150, 180) ẽ12 ∼ Z(120, 150, 160), ẽ22 ∼ Z(150, 200, 250).

Solution. The mathematical model of the 4DMOMITP under uncertainty can be framed using the pa-
rameters displayed in Tables 2–5 and solved by utilizing any of the deterministic models mentioned in
Section 5. We discuss here the results from the application of the three described solution methodologies
to each model.
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Table 2. The shipping costs for the first objective and each of two possible routes when using rail transport

ζ11ij1r 1 2 3 ζ12ij1r 1 2 3

r = 1
1 (7,8,11) (4,6,8) (2,4,7) 1 (5,7,9) (4,6,8) (2,4,6)
2 (4,6,8) (7,9,11) (5,7,9) 2 (3,6,9) (4,7,10) (3,6,9)

r = 2
1 (5,7,9) (2,5,8) (1,4,7) 1 (5,7,9) (5,9,13) (4,8,12)
2 (4,8,12) (8,11,14) (6,9,12) 2 (4,7,10) (5,7,9) (3,5,7)

Table 3. The shipping costs for the first objective and each of two possible routes when using cargoship transport

ζ11ij2r 1 2 3 ζ12ij2r 1 2 3

r = 1
1 (4,7,10) (7,9,11) (5,7,9) 1 (3,6,9) (5,8,11) (4,7,10)
2 (4,7,10) (7,8,9) (5,8,11) 2 (3,5,7) (5,7,9) (4,8,12)

r = 2
1 (4,6,8) (4,7,10) (4,6,8) 1 (4,8,12) (5,7,9) (3,6,9)
2 (6,8,10) (8,11,14) (4,7,10) 2 (5,8,11) (4,7,10) (4,6,8)

Table 4. The damage costs for the second objective and each of two possible routes when using rail transport

ζ21ij1r 1 2 3 ζ22ij1r 1 2 3

r = 1
1 (2,5,8) (6,9,12) (7,10,13) 1 (4,7,10) (4,7,10) (3,8,13)
2 (1,5,9) (7,11,15) (7,12,17) 2 (3,6,9) (3,6,9) (3,5,7)

r = 2
1 (1,4,7) (7,9,11) (8,11,14) 1 (3,5,7) (4,7,10) (1,3,5)
2 (4,7,10) (10,12,14) (7,10,13) 2 (4,8,12) (5,9,13) (5,8,11)

Table 5. The damage costs for the second objective and each of two possible routes when using cargoship transport

ζ21ij2r 1 2 3 ζ22ij2r 1 2 3

r = 1
1 (2,4,8) (6,8,10) (6,8,11) 1 (5,7,10) (4,7,10) (4,6,9)
2 (5,7,9) (6,9,12) (7,10,13) 2 (3,6,9) (4,6,8) (6,8,11)

r = 2
1 (8,10,13) (10,12,16) (8,10,12) 1 (5,8,12) (4,6,10) (4,7,11)
2 (7,10,13) (7,10,13) (7,11,15) 2 (6,8,11) (7,11,16) (5,7,9)

8.1. Expected value model

The EVM model can be formulated by calculating the expected values of the uncertain data for supplier
capacities, demand requirements, conveyance capacities and all of the uncertain variables given in Ta-
bles 2–5. Substituting these expected values into model (8), we obtain a deterministic multi-objective
EVM model, which can be solved using any of the three solution methodologies considered. We present
here the results obtained for the EVM model using the three solution methodologies described in Sec-
tion 7.

a) Weighted sum method.
The solutions obtained for the EVM model using the weighted sum method are displayed in Table 6. In
this table, Z∗1E and Z∗2E denote the Pareto-optimal values obtained after substituting the solution vector
into the objective functions Z1E and Z2E , respectively.

b) Minimizing distance method.
The results obtained using the single objective model obtained via MDM as described in Section 7.2 for
the EVM model are as follows: x1

1311 = 34, x1
2111 = 34, x2

1211 = 17.13, x2
2211 = 14.45, x2

2311 = 4.68,
x1

1212 = 24, x2
1312 = 27.31, x1

2221 = 12, x2
2121 = 34, x2

2221 = 0.42 with the ideal values taken to be
Zo

1E = 1051.750 and Zo
2E = 1216.250. The compromise values of the objective functions for the EVM

model obtained using the MDM method are Z∗1E = 1188.0 and Z∗2E = 1352.50.

c) Fuzzy programming technique.
Here, the results are obtained using FPT as described in Section 7.3. In order to apply FPT, the Ut and
Lt values are taken to be: L1 = 1051.750, L2 = 1216.250, U1 = 1986.250, U2 = 2372.50.
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Table 6. Solutions for the EVM model according to the weighted sum method using various weight vectors

w1 w2 Z∗
1E Z∗

2E Solution
1 0 1051.75 1558.25 x12111 = 34, x12311 = 12, x21211 = 26.25, x21311 = 32, x22211 = 5.75, x11212 =

36, x11312 = 22, x22121 = 34
0.8 0.2 1057.25 1524.25 x11311 = 22, x12111 = 34, x21211 = 26.25, x21311 = 32, x22211 = 5.75, x11212 =

36, x22121 = 34, x12322 = 12
0.6 0.4 1066.00 1500.75 x11311 = 34, x12111 = 34, x21211 = 32, x21311 = 26.25, x22311 = 5.75, x11212 =

24, x12221 = 12, x22121 = 34
0.5 0.5 1142.50 1398.00 x11311 = 34, x12111 = 34, x21211 = 32, x22311 = 20, x11212 = 24, x21312 = 12, x12221 =

12, x22121 = 34
0.4 0.6 1202.50 1338.00 x11311 = 34, x12111 = 34, x21211 = 12, x22211 = 20, x11212 = 24, x21312 = 32, x12221 =

12, x22121 = 34
0.2 0.8 1360.50 1240.25 x12111 = 34, x22211 = 32, x11212 = 24, x21112 = 26.25, x21312 = 32, x11321 =

34, x12221 = 12, x22121 = 7.75
0 1 1464.25 1216.25 x12111 = 34, x22111 = 7.75, x22211 = 32, x21112 = 26.25, x21312 = 32, x11221 =

24, x11321 = 34, x12221 = 12

Solution for the EVM model using FPT were obtained by considering two different sets of shape
parameters in the exponential mf (s1 = 2, s2 = 3) and (s1 = −2, s2 = −2), where the s1 shape
parameter corresponds to the Z1E objective and the s2 shape parameter corresponds to the Z2E objective.
The results for these two cases are shown in Table 7.

Table 7. Solutions for the EVM model using fuzzy programming with shape parameters (s1, s2) in the exponential mf

(s1, s2) Z∗
1E Z∗

2E λ Solution
(2,3) 1193.536 1346.964 0.6973 x11311 = 34, x12111 = 34, x21211 = 14.99, x22211 = 10.36, x22311 =

2.99, x11212 = 24, x21312 = 29.01, x12221 = 12, x22121 = 34, x22221 = 6.65
(-2,-2) 1173.549 1366.951 0.9534 x11311 = 34, x12111 = 34, x21211 = 26, x22211 = 2.998, x22311 =

7.47, x11212 = 24, x21312 = 24.53, x12221 = 12, x22121 = 34, x22221 = 2.998

8.2. Optimistic value model

As the OVM involves predetermined confidence levels αt, α
p
i , β

p
j , γkr ∈ (0, 1] to determine the corre-

sponding deterministic model (9), the OVM for the problem under uncertainty may be formulated by
considering two classes of confidence levels.

Class 1 (cl1). In this class, we consider all the cases of confidence levels in the interval [0.5, 1], i.e.
αt, α

p
i , β

p
j , γkr ∈ [0.5, 1]. To solve the numerical problem presented, let us assume that all the confidence

levels are equal to 0.9. The three solution methodologies listed in Section 7 can be used to solve the
OVM model for class cl1. The results obtained for each of these three methods are displayed below.

a) Weighted sum method.
The solutions obtained for the OVM model (cl1) using WSM are given in Table 8.

b) Minimizing distance method.
The solution obtained for the OVM model (cl1) using MDM is: x1

1311 = 25.2, x1
2111 = 32.4, x2

1211 =
7.2, x2

1311 = 0.58, x2
2211 = 23.2, x1

1212 = 34.4, x2
1312 = 29.02, x2

2121 = 32.4, x1
2322 = 6.4. The compromise

values obtained for the objective functions are Z∗1S = 711.1706 and Z∗2S = 830.545.

c) Fuzzy programming technique.
To apply the fuzzy programming technique with exponential mf, the Ut and Lt values are taken to be:
L1 = 616.720, L2 = 743.360, U1 = 1494.840, U2 = 1825.84. Solving the OVM model (cl1) for the two
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Table 8. Solutions for the OVM using the weighted sum method with various weight vectors

w1 w2 Z∗
1S Z∗

2S Solution
1 0 616.72 954.40 x12111 = 32.4, x21211 = 30.4, x21311 = 29.6, x11212 = 34.4, x11312 = 25.2, x22121 =

32.4, x12322 = 6.4
0.8 0.2 621.36 931.20 x12111 = 32.4, x21211 = 7.2, x21311 = 29.6, x22211 = 23.2, x11212 = 34.4, x11312 =

25.2, x22121 = 32.4, x12322 = 6.4
0.6 0.4 621.36 931.20 x12111 = 32.4, x21211 = 7.2, x21311 = 29.6, x22211 = 23.2, x11212 = 34.4, x11312 =

25.2, x22121 = 32.4, x12322 = 6.4
0.5 0.5 712.56 829.04 x11311 = 25.2, x12111 = 32.4, x21211 = 7.2, x22211 = 23.2, x11212 = 34.4, x21312 =

29.6, x22121 = 32.4, x12322 = 6.4
0.4 0.6 712.56 829.04 x11311 = 25.2, x12111 = 32.4, x21211 = 7.2, x22211 = 23.2, x11212 = 34.4, x21312 =

29.6, x22121 = 32.4, x12322 = 6.4
0.2 0.8 888.96 753.68 x11211 = 28, x12111 = 32.4, x22211 = 30.4, x21112 = 7.2, x21312 = 29.6, x11321 =

31.6, x12221 = 6.4, x22121 = 25.2
0 1 1020.48 743.36 x12111 = 32.4, x22111 = 1.6, x22211 = 30.4, x21112 = 30.8, x21312 = 29.6, x11221 =

28, x11321 = 31.6, x12221 = 6.4

different sets of shape parameters (s1 = 2, s2 = 3) and (s1 = −2, s2 = −2), we obtain the solutions
shown in Table 9.

Table 9. Solutions for the OVM model using fuzzy programming with shape parameters (s1, s2) in the exponential mf (cl1)
(s1, s2) Z∗

1S Z∗
2S λ Solution

(2,3) 711.615 830.064 0.7752 x11311 = 25.2, x12111 = 32.4, x21211 = 7.2, x21311 = 0.394, x22211 = 23.2, x11212 =
34.4, x21312 = 29.21, x22121 = 32.4, x12322 = 6.4

(-2,-2) 698.543 844.225 0.9679 x11311 = 25.2, x12111 = 32.4, x21211 = 7.2, x21311 = 5.84, x22211 = 23.2, x11212 =
34.4, x21312 = 23.76, x22121 = 32.4, x12322 = 6.4

Class 2 (cl2). In this case, αt, α
p
i , β

p
j , γkr ∈ [0, 0.5). Let us assume that all of the confidence levels are

equal to 0.1. The results for the class cl2 of confidence levels can be obtained in a similar way to the
solutions obtained for the OVM model with confidence levels in class cl1. The results obtained for this
class cl2 are displayed in Table 17 of Section 10.

8.3. Dependent optimistic-constrained model

The deterministic model for the DOCM, model (10), is obtained using Theorem 2 and depends on the
chosen values of f̄1 and f̄2. The values of f̄1 and f̄2 considered in this model are 1400 and 1600, respec-
tively. A deterministic model (10) can be obtained by setting the confidence levels to 0.9 and transforming
the fractional objectives (represented by ZtM ) into their linear form (represented by Z ′tM ) using the trans-
formation given by Charnes and Cooper [4]. The results obtained for the linear DOCM model using the
three solution methodologies considered are presented below.

a) Weighted sum method.
The solutions obtained for the linear DOCM model using WSM are given in Table 10. The solutions
presented in this table are retransformed back into terms of ’X’ decision variables using x = y/t. The
retransformed solutions are shown in Table 11.

It may happen that the Pareto optimal solution found in terms of an uncertain measure is not suitable
for the decision-maker. So, a solution vector given in Table 10 can be substituted into the original model
involving uncertainty by considering lower, middle and upper values of the uncertain variables to give
a range of uncertainty to the decision-maker. For instance, consider the solution vector obtained using
the weights (w1 = 0.5, w2 = 0.5) given in Table 10. We substitute this solution vector into the original
model with uncertainty to obtain the uncertain values [690.4, 1143.2, 1622.4] and [792, 1271.2, 1750.4]
for the objectives Z̃1 and Z̃2, respectively. Such uncertain values can be obtained for each of the various
cases of weight vectors considered in a similar way.
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Table 10. Solutions for the linear DOCM model using WSM with various weight vectors

w1 w2 Z
′∗
1M Z

′∗
2M Solution

1 0 0.8455414 0.6385350 t = 0.00099522, y21211 = 0.03025478, y21311 = 0.00636943, y22311 =
0.02229299, y11212 = 0.03423567, y11312 = 0.02507962, y22312 =
0.00079618, y12121 = 0.03224522, y22121 = 0.03224522, y12322 = 0.00636942

0.8 0.2 0.8345128 0.7170659 t = 0.00102069, y11311 = 0.03225367, y12111 = 0.00707676, y21211 =
0.03102885, y22311 = 0.03021230, y11212 = 0.02857921, y21112 =
0.00653239, y12121 = 0.02599347, y12221 = 0.00653239, y22121 = 0.02653783

0.6 0.4 0.7719883 0.8370154 t = 0.00104210, y11311 = 0.02326094, y12111 = 0.03376407, y21211 =
0.00187578, y22311 = 0.02813672, y11212 = 0.03584827, y21112 =
0.03376407, y21312 = 0.00270946, y12321 = 0.00666945, y22221 = 0.02980409

0.5 0.5 0.7679466 0.8430718 t = 0.00104341, y11311 = 0.02754591, y12111 = 0.03380634, y22311 =
0.02629382, y11212 = 0.03464107, y21112 = 0.03380634, y21312 =
0.00459098, y12221 = 0.00125209, y12321 = 0.00542571, y22221 = 0.03171953

0.4 0.6 0.6377220 0.9466040 t = 0.00104493, y12111 = 0.03385580, y22311 = 0.00167189, y11212 =
0.03542320, y21112 = 0.03385580, y21312 = 0.02925810, y11321 =
0.02685475, y12221 = 0.000522470, y12321 = 0.00616510, y22221 = 0.03176594

0.2 0.8 0.6192231 0.9519422 t = 0.00106323, y12111 = 0.02608449, y11212 = 0.02977034, y21112 =
0.03274738, y21312 = 0.03147151, y11321 = 0.03359796, y12121 =
0.00836405, y12221 = 0.00680465, y22121 = 0.00170116, y22221 = 0.03232209

0 1 0.4599311 0.9814735 t = 0.00107712, y12111 = 0.01831107, y22111 = 0.00172339, y11112 =
0.01658768, y21112 = 0.03317536, y21312 = 0.03188281, y11221 =
0.03705299, y11321 = 0.01055579, y12321 = 0.02348126, y22221 = 0.03274451

Table 11. Solutions (after retransformation) for the DOCM model using WSM with various weight vectors

w1 w2 Z∗
1M Z∗

2M Solution
1 0 0.8455414 0.6385350 x21211 = 30.4, x21311 = 6.4, x22311 = 22.4, x11212 = 34.4, x11312 = 25.2, x22312 =

0.8, x12121 = 32.4, x22121 = 32.4, x12322 = 6.4
0.8 0.2 0.8345128 0.7170659 x11311 = 31.6, x12111 = 6.93, x21211 = 30.4, x22311 = 29.6, x11212 = 28.0, x21112 =

6.4, x12121 = 25.5, x12221 = 6.4, x22121 = 26
0.6 0.4 0.7719883 0.8370154 x11311 = 25.2, x12111 = 32.4, x21211 = 1.8, x22311 = 27, x11212 = 34.4, x21112 =

32.4, x21312 = 2.6, x12321 = 6.4, x22221 = 28.6
0.5 0.5 0.7679466 0.8430718 x11311 = 26.4, x12111 = 32.4, x22311 = 25.2, x11212 = 33.2, x21112 = 32.4, x21312 =

4.4, x12221 = 1.2, x12321 = 5.2, x22221 = 30.4
0.4 0.6 0.6377220 0.9466040 x12111 = 32.4, x22311 = 1.6, y11212 = 33.9, x21112 = 32.4, x21312 = 28, x11321 =

25.7, x12221 = 0.5, x12321 = 5.9, x22221 = 30.4
0.2 0.8 0.6192231 0.9519422 x12111 = 24.53, x11212 = 28, x21112 = 30.8, x21312 = 29.6, x11321 = 31.6, x12121 =

7.87, x12221 = 6.4, x22121 = 1.6, x22221 = 30.4
0 1 0.4599311 0.9814735 x12111 = 17, x22111 = 1.6, x11112 = 15.4, x21112 = 30.8, x21312 = 29.6, x11221 =

34.4, x11321 = 9.8, x12321 = 21.8, x22221 = 30.4

b) Minimizing distance method.
The solution obtained for the linear DOCM model using MDM is: t = 0.001042174, y1

1311 = 0.02633308,
y1

2111 = 0.0337664, y2
1211 = 0.001770472, y2

2311 = 0.028003326, y1
1212 = 0.0357805, y2

1112 = 0.03376644,
y2

1312 = 0.00281509, y1
2221 = 0.000070294, y1

2321 = 0.00659962, y2
2221 = 0.02991162 and the compro-

mise solutions obtained for the objective functions in the linear DOCM model is Z ′∗1M = 0.7717614
and Z ′∗2M = 0.8373554. After retransformation, the solution obtained for the DOCM using MDM is:
x1

1311 = 25.267, x1
2111 = 32.4, x2

1211 = 1.699, x2
2311 = 26.9, x1

1212 = 34.33, x2
1112 = 32.4, x2

1312 =
2.70, x1

2221 = 0.0674, x1
2321 = 6.33, x2

2221 = 28.701.
This solution can be substituted into the original model with uncertainty to obtain a range of uncer-

tainty for the objective functions i.e. Z̃1 ∈ [684.74, 1139.24, 1619] and Z̃2 ∈ [796.53, 1276.3, 1756.06].

c) Fuzzy programming technique.
To apply the FPT, the Ut and Lt values are taken to be L1 = 0.07144754, L2 = 0.03139867, U1 =
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0.9889604, U2 = 0.9823045. Now, solving the linear DOCM model for two different sets of shape
parameters (s1, s2) = (2, 3) and (s1, s2) = (−2,−2) in the exponential mf, we obtain the solutions
shown in Table 12.

Table 12. Solutions for the DOCM model using fuzzy programming with shape parameters (s1, s2) in the exponential mf

(s1, s2) Z
′∗
1M Z

′∗
2M λ Solution

(2,3) 0.78157 0.82056 0.57939 t = 0.001042029, y11311 = 0.02625913, y12111 = 0.03101790, y21211 =
0.005991410, y22311 = 0.03084405, y11212 = 0.03584579, y21112 =
0.03235525, y12121 = 0.002743839, y12321 = 0.006668985, y22121 =
0.001406483, y22221 = 0.02568627

(-2,-2) 0.79956 0.78601 0.92000 t = 0.001029264, y11311 = 0.02593745, y12111 = 0.02451297, y21211 =
0.01510546, y22311 = 0.03046622, y11212 = 0.03540668, y21112 =
0.02277146, y12121 = 0.008835188, y12321 = 0.006587290, y22121 =
0.01057670, y22221 = 0.01618417

The solutions given in Table 12 are retransformed into the original decision variables using x = y/t
as shown in Table 13.

Table 13. Solutions (after retransformation) for the DOCM model using fuzzy programming with shape parameters (s1, s2)
in the exponential mf

(s1, s2) Z∗
1M Z∗

2M λ Solution

(2,3) [675.15, 1129.78,
1609.62]

[812.53, 1292.37,
1772.2]

0.57939 x11311 = 25.2, x12111 = 29.767, x21211 = 5.750, x22311 =
29.6, x11212 = 34.4, x21112 = 31.05, x12121 =
2.63, x12321 = 6.4, x22121 = 1.35, x22221 = 24.65

(-2,-2) [648.37, 1108.96,
1594.74]

[836.34, 1322.12,
1807.90]

0.9200 x11311 = 25.2, x12111 = 23.816, x21211 = 14.676, x22311 =
29.6, x11212 = 34.4, x21112 = 22.124, x12121 =
8.584, x12321 = 6.4, x22121 = 10.276, x22221 = 15.724

9. Analysis of the sensitivity to confidence levels

This section investigates the sensitivity of the objective functions with respect to confidence levels. Of
the three models discussed, only the OVM and DOCM models involve confidence levels in their objec-
tive functions and constraints. Therefore, a sensitivity analysis is performed for both of these models
to investigate how variation in the confidence levels affects the objective values attained for these mod-
els. The sensitivity analysis is performed by varying the confidence levels αpi , β

p
j and γkr present in the

constraints of the OVM and DOCM models. The confidence level αt associated with the objective func-
tion can be varied over the interval [0, 1]. In this sensitivity analysis, two cases of the confidence levels
αt (αt = 0.1, 0.9) have been considered for the objective functions. The sensitivity analysis is carried out
by changing one confidence level (say αpi ) in the range [0.1, 0.9] and assuming that the other two confi-
dence levels (βPj , γkr) are fixed to be 0.9. Once the variation of αpi is completed, one can vary βpj between
[0.1, 0.9] and the other two confidence levels (αpi , γkr) are fixed to be 0.9. This step is repeated for γkr by
fixing αpi and βpj to 0.9. This procedure of varying each of the three confidence levels is performed for
two cases of αt, i.e. αt = 0.1 and αt = 0.9. In this section, results of the sensitivity analysis are only
presented for FPT. However, a similar analysis can be done for the other two solution methodologies,
WSM and MDM.

Table 14 and Table 15 display the objective values obtained for the OVM model during the sensitivity
analysis. The column “Variation in αpi ” shows that only αpi is varied in the range [0.1, 0.9] and the other
two confidence levels βpj and γkr are fixed to be 0.9. “CL” is the notation used for variation of the
confidence levels αpi , β

p
j and γkr. A graphical representation of the sensitivity analysis performed with

respect to all the confidence levels αpi , β
p
j and γkr is shown in Figure 1 and Figure 2. It is observed from
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Figure 1 and Figure 2 that the values of the objective values attained are decreasing with respect to the
tested confidence levels αpi , β

p
j and are constant with respect to γkr.

Table 14. Objective values obtained during the sensitivity analysis for the OVM models with exponential mf using shape
parameters (2,3)

Variation in αp
i Variation in βp

j Variation in γkr
CL Obj fun αt = 0.1 αt = 0.9 αt = 0.1 αt = 0.9 αt = 0.1 αt = 0.9

0.1 Z∗
1S 1493.107 721.1515 1671.539 814.4289 1490.923 711.6150

Z∗
2S 1689.152 831.6846 1895.513 931.0897 1681.916 830.0638

0.2 Z∗
1S 1492.775 719.9103 1648.945 801.5637 1490.923 711.6150

Z∗
2S 1688.319 831.4453 1868.834 918.4052 1681.916 830.0638

0.3 Z∗
1S 1492.441 718.6667 1626.350 788.6978 1490.923 711.6150

Z∗
2S 1687.487 831.2072 1842.157 905.7267 1681.916 830.0638

0.4 Z∗
1S 1492.108 717.4208 1603.753 775.8010 1490.923 711.6150

Z∗
2S 1686.654 830.9705 1815.480 893.0540 1681.916 830.0638

0.5 Z∗
1S 1491.776 716.1725 1581.156 762.9044 1490.923 711.6150

Z∗
2S 1685.821 830.7350 1788.805 880.3867 1681.916 830.0638

0.6 Z∗
1S 1491.523 714.9449 1558.559 749.9978 1490.923 711.6150

Z∗
2S 1684.892 830.4964 1762.129 867.7249 1681.916 830.0638

0.7 Z∗
1S 1491.271 713.8256 1535.963 737.1348 1490.923 711.6150

Z∗
2S 1683.962 830.3623 1735.453 855.1173 1681.916 830.0638

0.8 Z∗
1S 1491.019 712.7046 1513.364 724.3610 1490.923 711.6150

Z∗
2S 1683.033 830.2300 1708.779 842.6056 1681.916 830.0638

0.9 Z∗
1S 1490.923 711.6150 1490.923 711.6150 1490.923 711.6150

Z∗
2S 1681.916 830.0638 1681.916 830.0638 1681.916 830.0638

Table 15. Objective values obtained during the sensitivity analysis for the OVM models with exponential mf using shape
parameters (-2,-2)

Variation in αp
i Variation in βp

j Variation in γkr
CL Obj Fun αt = 0.1 αt = 0.9 αt = 0.1 αt = 0.9 αt = 0.1 αt = 0.9

0.1 Z∗
1S 1471.550 707.6865 1647.927 799.2245 1468.456 698.5429

Z∗
2S 1715.020 845.0929 1923.847 945.9535 1708.877 844.2251

0.2 Z∗
1S 1471.117 706.5402 1625.464 786.6545 1468.456 698.5429

Z∗
2S 1714.307 844.9882 1897.011 933.2209 1708.877 844.2251

0.3 Z∗
1S 1470.685 705.3925 1603.003 774.0783 1468.456 698.5429

Z∗
2S 1713.594 844.8848 1870.173 920.4952 1708.877 844.2251

0.4 Z∗
1S 1470.253 704.2435 1580.544 761.4961 1468.456 698.5429

Z∗
2S 1712.881 844.7828 1843.332 907.7759 1708.877 844.2251

0.5 Z∗
1S 1469.821 703.0934 1558.086 748.9081 1468.456 698.5429

Z∗
2S 1712.167 844.6822 1816.489 895.0628 1708.877 844.2251

0.6 Z∗
1S 1469.433 701.9482 1535.630 736.3148 1468.456 698.5429

Z∗
2S 1711.400 844.5761 1789.644 882.3557 1708.877 844.2251

0.7 Z∗
1S 1469.046 700.8016 1513.176 723.7162 1468.456 698.5429

Z∗
2S 1710.633 844.4715 1762.797 869.6541 1708.877 844.2251

0.8 Z∗
1S 1468.658 699.6537 1490.723 711.1126 1468.456 698.5429

Z∗
2S 1709.866 844.3685 1735.949 856.9580 1708.877 844.2251

0.9 Z∗
1S 1468.456 698.5429 1468.456 698.5429 1468.456 698.5429

Z∗
2S 1708.877 844.2251 1708.877 844.2251 1708.877 844.2251

The sensitivity of the linear DOCM model is examined likewise w.r.t. the confidence levels αpi , β
p
j , γkr.

Table 16 shows the uncertain measures of the objective functions obtained during the sensitivity analy-
sis for the linear DOCM model. Figure 3 and Figure 4 illustrate the sensitivity analysis for the DOCM
model and it is observed that the uncertain measures of the objective functions are non-decreasing w.r.t.
the confidence levels. This means that with the increase in the value of confidence levels, the value of the
uncertain measure also increases eventually.
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Figure 1. Sensitivity analysis for the OVM model w.r.t αp
i , β

p
j and γkr using exponential mf with shape parameters (2, 3) for

class cl1
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Figure 2. Sensitivity analysis for OVM model w.r.t αp
i , β

p
j and γkr using exponential mf with shape parameters (−2,−2) for
class cl1

10. Results and comparison

In this section, we present the results obtained for the 4DMOMITP under uncertainty using the EVM,
OVM and DOCM models. The solution methodologies chosen for solving these three models are:
the weighted sum method, minimizing distance method and fuzzy programming technique. Table 17
compares the results obtained for the EVM, OVM and DOCM models using each of the three solution
methodologies. We can observe from Table 17 that no method dominates any other method, since the
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Table 16. Values of the objective function obtained during the sensitivity analysis of the linear DOCM model

CL Z∗
tM Variation in αp

i Variation in βp
j Variation in γkr

(2,3) (-2,-2) (2,3) (-2,-2) (2,3) (-2,-2)
0.1 Z∗

1M 0.773720 0.791585 0.610116 0.627381 0.781573 0.799561
Z∗
2M 0.806964 0.772996 0.638970 0.608550 0.820564 0.786012

0.2 Z∗
1M 0.774765 0.792639 0.628963 0.646606 0.781573 0.799561

Z∗
2M 0.808528 0.774499 0.658306 0.627474 0.820564 0.786012

0.3 Z∗
1M 0.775808 0.793690 0.648272 0.666301 0.781573 0.799561

Z∗
2M 0.810100 0.776013 0.678316 0.647077 0.820564 0.786012

0.4 Z∗
1M 0.776849 0.794738 0.668059 0.686480 0.781573 0.799561

Z∗
2M 0.811680 0.777536 0.699038 0.667393 0.820564 0.786012

0.5 Z∗
1M 0.777811 0.795690 0.689388 0.707847 0.781573 0.799561

Z∗
2M 0.813415 0.779248 0.721358 0.689171 0.820563 0.786012

0.6 Z∗
1M 0.778840 0.796766 0.711578 0.729950 0.781573 0.799561

Z∗
2M 0.815026 0.780726 0.744750 0.711972 0.820564 0.786012

0.7 Z∗
1M 0.779789 0.797744 0.734339 0.752609 0.781573 0.799561

Z∗
2M 0.816794 0.782394 0.769011 0.735634 0.820564 0.786012

0.8 Z∗
1M 0.780735 0.798718 0.757697 0.775846 0.781573 0.799561

Z∗
2M 0.818573 0.784074 0.7941954 0.760212 0.820564 0.786012

0.9 Z∗
1M 0.781573 0.799561 0.781573 0.799561 0.781573 0.799561

Z∗
2M 0.820564 0.786012 0.820564 0.786012 0.820564 0.786012
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Figure 3. Sensitivity analysis for the DOCM model w.r.t αp
i , β

p
j and γkr using exponential mf with shape parameters (2, 3)

solutions obtained are Pareto-optimal. From Table 17, it is clearly seen that if one method gives a bet-
ter solution for one objective than a second method, then the second method gives a better solution for
the second objective. The results for the DOCM model obtained using each of the three methods are
non-dominating with respect to each other.

From the results obtained using the three given solution methodologies, we can say that the minimiz-
ing distance method will always lead to a single optimal solution, whereas the weighted sum method
and fuzzy programming technique (with exponential mf) give various solutions according to the choice
of weights and shape parameters, respectively. Also, we would like to add that the fuzzy technique with
exponential mf is more efficient than the other two methodologies, because a number of alternatives
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Figure 4. Sensitivity analysis for the DOCM model w.r.t αp
i , β

p
j and γkr using exponential mf with shape parameters (−2,−2)

Table 17. Comparison of the results obtained using various methodologies

Model Obj values WSM with equal weights MDM FPT with exp mf
(2,3) (-2,-2)

EVM Z∗
1E 1142.50 1188.0 1193.536 1173.549

Z∗
2E 1398.0 1352.50 1346.964 1366.951

OVM (Cl1) Z∗
1S 712.560 711.1706 711.6150 698.5429

Z∗
2S 829.040 830.5452 830.0638 844.2251

OVM (Cl2) Z∗
1S 1734.160 1697.680 1678.140 1657.182

Z∗
2S 1842.080 1878.560 1906.785 1937.294

DOCM Z∗
1M 0.7679466 0.7717614 0.7815730 0.995611

Z∗
2M 0.8430718 0.8373554 0.8205637 0.7860120

can be obtained with the help of shape parameters, which can be changed without any restriction unlike
choosing a weight vector whose components sum to one, thus providing the decision-maker with a wide
range of solutions.

Moreover, the four-dimensional problem under an uncertain environment is a relatively new area of
research interest. Sahoo et al. [31] were the first to present the 4DMOMITP and obtained solutions
using the goal programming technique. In their work, they considered an uncertain environment with
normal uncertain variables. Recently, Revathi et al. [29] studied a four-dimensional MOMITP that took
into account vehicle speed by considering linear uncertain variables. Later, in 2021, Revathi et al. [28]
extended their work by studying four-dimensional TP with fractional objectives under uncertainty. It
should be noted that the four-dimensional MOMITP presented by Sahoo et al. [31] deals with normal
uncertain variables, whereas the 4DMOMITP discussed by Revathi et al. [29, 28] deals with two differ-
ent problems. This article has considered zigzag uncertain variables for uncertain 4DMOMITP which
differs from the previously discussed research articles and thus the results for such problems cannot be
directly compared with the results from other articles. Also, it has been observed that solutions to four-
dimensional problems or any variant of TP under a uncertain environment presented in the literature
most commonly have utilized the expected value criterion or chance-criterion and no research article has
considered the optimistic value criterion to convert a model involving uncertainty into a deterministic
model. Hence, this article considered the optimistic value criterion along with two other ranking criteria
to obtain deterministic models.
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11. Conclusion

This paper has discussed a 4DMOMITP in an uncertain environment with zigzag uncertain variables.
We solved the MOMITP model under uncertainty by transforming to one of three deterministic mod-
els: EVM, OVM and DOCM. Further, these deterministic models were solved using each of the three
following approaches: WSM, MDM and FPT with exponential membership function. The EVM model
gives a solution in terms of the expected values of the objective functions. The EVM model can give
one or various solutions to the decision-maker depending on the solution methodology used. But, the
OVM and DOCM models can always give various solutions to the decision-maker, independently of the
solution method used, according to the confidence levels selected. Hence, these two models can provide
the decision-maker with a number of alternative solutions by varying the confidence levels. Thus the
OVM and DOCM models provide a wider range of solutions than the EVM model.

This paper has focused on four-dimensional multi-objective multi-item transportation problems in
an uncertain environment with zigzag uncertain variables. In the future, this work can be extended by
considering multi-objective transportation problems and their variants under two-fold uncertainty. Also,
most of the variants of transportation problems have been solved using classical approaches and very little
research has been carried out in the direction of evolutionary algorithms. Hence, there are a large number
of applications of uncertainty theory (which is applicable when no historical references are available) to
real-world complex problems that can be solved using various evolutionary algorithms, such as genetic
algorithms, Jaya algorithms, Rao algorithms etc.
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