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Abstract

In this paper, we analyze an M/M/1 queueing system under both single and multiple working vacation policies, multi-
phase random environment, waiting server, balking and reneging. When the system is in operative phase j = 1, 2, . . . ,K,
customers are served one by one. Whenever the system becomes empty, the server waits a random amount of time before
taking a vacation, causing the system to move to working vacation phase 0 at which new arrivals are served at a lower rate.
Using the probability generating function method, we obtain the distribution for the steady-state probabilities of the system.
Then, we derive important performance measures of the queueing system. Finally, some numerical examples are illustrated
to show the impact of system parameters on performance measures of the queueing system.

Keywords: queueing models, multi-phase random environment, working vacation policies, impatient customers, probability
generating function

1. Introduction

Queueing theory has received considerable attention due to its importance in a variety of applications,
including service systems, telecommunication networks, production and manufacturing systems, airlines,
healthcare, etc. For a notable research work in this area, we refer the reader, for instance, to [6, 19, 24, 25,
26, 27, 33, 42]. In recent past, queueing systems operating in a random environment have been widely
studied, because of their significant applications in complex modern communication networks. Yechiali
and Naor [46] and Yechiali [45] analyzed an infinite-buffer single server Markovian queueing model in a
2-phase random environment, where arrival and service rates depend on the environmental phase. Their
investigation are considered to be the pioneer works on queueing systems in a random environment.
Neuts [36] generalized their study to an M/G/1 queue. Then, in Neuts [37], the author presented an
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analysis of an infinite-buffer multiserver Markovian queueing model in a random environment, using the
matrix analytic approach. In addition, the M/G/1 queueing model in a two-phase random environment
was carried out by Boxma and Kurkova [18], and Huang and Lee [28]. Cordeiro and Kharoufeh [21]
considered an unreliable M/M/1 retrial queueing system whose arrival, service, failure, repair, and
retrial rates are all subject to random environment. An infinite-capacity single-server Markovian queue
in random environment with disasters was investigated in [40]. Then Jiang et al. [30] extended their
work to the M/G/1 queueing model. Kim and Kim [32] dealt with a single server queue with Markov
modulated service rates and impatient customers. Later, Li and Liu [34] studied a discrete-timeGeo/G/1
queueing model with vacations in random environment. Recently, Jiang and Liu [29] have discussed an
GI/M/1 queueing model in a multi-phase service environment with disasters and working breakdowns.
After that, a performance study of an M/M/1 queueing system with vacations operating in a multi-
phase random environment was presented by Li and Liu [35]. Yu and Liu [47] established the analysis of
queues in a random environment with customers’ impatience. For the infinite-server queue in a random
environment, excellent surveys were given by O’Cinneide and Purdue [38], Baykal-Gursoy and Xiao [7],
and D’Auria [22].

In previous decades, queueing models with customers’ impatience, namely balking (on arrival, a
customer decides whether or not to enter the queue depending on the queue length) and reneging (a
customer may quit the system without getting a service, because of the long waiting time), have been
the focus of diverse research studies due to their large applicability in different real-world situations,
including network service, healthcare, and production and manufacturing system (see, e.g., [1, 2, 8,
9, 11, 20, 23, 48]). Further, vacation/working vacation queues with customers’ impatience have been
extensively studied, because of their versatility and applicability. Vacation (V) policy represents the case
where the server is unavailable to serve the new arrivals during this period ([3, 4, 10, 12, 13, 31]). While
in working vacation (WV) period, the server serves new arrivals with a slow service rate ([14, 16, 17,
43, 44]). In addition, vacation queues with waiting server and impatient customers reflect real-world
situations, especially when dealing with human behavior. In this context, once the system gets empty,
the server waits a random period of time before going on vacation or working vacation period ([5], [15],
and [41]).

Inspired by these applications and works by Li and Liu [35] and Yu and Liu [47], we develop in this
paper the queueing model presented by [35], in which an M/M/1 queueing model with vacations oper-
ating in a multi-phase random environment was studied, and we are extending this model to the M/M/1
queue operating in a multi-phase random environment with both multiple and single working vacation
policies, waiting server, balking and reneging. We use probability generating functions (PGFs), to obtain
the steady-state solution of the queueing system. This approach is an important tool for presenting the
solution of difference equations set and solving probability problems. Thus, we can without difficulty
obtain closed-form expressions for the steady-state distributions of the queueing model and derive vari-
ous system characteristics. The approach used is highly efficient in producing computational results for
the suggested queueing system as well as more complex models. In addition, for our system, we carry
out a numerical analysis to show the impact of the system parameters on the system performance.

The sections of this paper are the following. The model description is given in Section 2. In addition, a
practical application of the suggested model is presented. Section 3 is devoted to obtaining the stationary
distribution of the proposed queueing model. Then, some practical cases are provided. In Section 4, we
derive useful performance measures. Section 5 gives some numerical examples to show the impact of
system parameters on different system performances. In Section 6, we conclude the paper.
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2. The model

We consider an M/M/1 queueing system with single and multiple working vacations, multi-phase ran-
dom environment, waiting server, balking and reneging. The assumption of the queueing model can be
given as follows.

• Customers arrive into the system one by one according to a Poisson process with an arrival rate λ.
The service discipline is FCFS and there is an infinite space for customers to wait.

• During normal busy period (phase j = 1, K), the service times are i.i.d. exponential random
variables with rate µj, j = 1, K.

• Whenever the system becomes empty (there are no customers in the system), the server waits a
random period of time before going on working vacation period (phase 0). This waiting time follows
an exponential distribution with parameter $. The working vacation times are i.i.d. exponentially
distributed with rate φ.

• Two policies are considered:

– multiple working vacation: if the server returns from a working vacation to find an empty
queue, another working vacation begins; otherwise, the system jumps from phase 0 to some

service phase j with probability σj, j = 1, 2, . . . , K, where σj > 0 and
K∑
j=1

σj = 1,

– single working vacation: if the system is still empty after the working vacation ends, the server
switches to the busy period and stays there, waiting for a new arrival.

Let δ be the indicator function, so

δ =

{
1 for the single working vacation model (SWV)
0 for the multiple working vacation model (MWV)

• During the working vacation period (phase 0), the server serves customers at a lower rate rather than
staying inactive, the service time during this phase is assumed to be exponentially distributed with
parameter µ0, with µ0 < µj, j = 1, 2, . . . , K.

• Note that the system cannot move directly from one service phase to another service phase. That is,
if the system becomes empty, it should first move to phase 0.

• On arrival, a customer either decides to join the queue with probability θ, if the number of customers
in the system is larger than or equal to one, or balk with probability 1− θ.

• During working vacation period, a customer activates an impatience timer T , which is exponentially
distributed with parameter ξ. If the customer’s service has not been completed before the customer’s
timer expires, the customer may abandon the queue. The customers timers are independent and
identically distributed random variables and independent of the number of waiting customers.

• The inter-arrival times, waiting server, working vacation periods and service times are mutually
independent.

2.1. Motivation and practical application

The motivation for dealing with the proposed queueing system in a multi-phase random environment
comes from diverse areas, particularly in manufacturing systems at which when there is no raw material
(customer) to be processed, the operator (server) waits a certain period of time before going on a working
vacation even though there are no customers in the system.
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For better server usage and optimal maintenance cost, working vacation is integrated in such a way
that the server can also serve new arrivals at a slower rate. In other words, the operator keeps on working
but with a slower rate than before. Here, when the server returns from working vacation and finds raw
materials existing, he serves them immediately; otherwise, two possible cases are taken into account: (a)
he goes on another working vacation (multiple working vacation), (b) he remains there waiting for new
arrivals (single working vacation). Moreover, the new service rate may differ from the previous service
rate. In such a system, the intensity of the service can vary depending on the type of work being handled.
During the working vacation period, new arrivals may get impatient and leave the system if they have
not completed their service before their impatience timers expire. Further, new arrivals decide whether
to join the queue or balk based on the information concerning the system size.

3. Steady-state solution

Let L(t) be the number of customers in the system at time t and J(t) be the state of the server at time t
such that

J(t) =

{
1 when the server is on a phase, j = 1, . . . , K
0 the sever is on phase 0

Clearly, the process {(J(t);L(t)) : t ≥ 0} is a continuous-time Markov process with state space Ω =
{(j;n) : j = 0, K, n = 0, 1, . . . }. Let Pj,n = lim

t→∞
P{J(t) = j;L(t) = n}, j = 0, K, n = 0, 1, . . . ,

(j;n) ∈ Ω be the system state probabilities.
The balance equations of the queueing model are

(λ0 + δφ)P0,0 = $
K∑
j=1

Pj,0 + (µ0 + ξ)P0,1, j = 0, n = 0 (1)

(θλ0 + φ+ µ0 + ξ)P0,1 = λ0P0,0 + (µ0 + 2ξ)P0,2, j = 0, n = 1 (2)
(θλ0 + φ+ µ0 + nξ)P0,n = θλ0P0,n−1 + (µ0 + (n+ 1)ξ)P0,n+1, j = 0, n ≥ 2 (3)
(λj +$)Pj,0 = δσjφP0,0 + µjPj,1, j = 1, K, n = 0 (4)
(θλj + µj)Pj,1 = σjφP0,1 + λjPj,0 + µjPj,2, j = 1, K, n = 1 (5)
(θλj + µj)Pj,n = σjφP0,n + θλjPj,n−1 + µjPj,n+1, j = 1, K, n ≥ 2 (6)

The normalization condition is defined as
∞∑
n=0

K∑
j=0

Pj,n = 1 (7)

Theorem 1. Under the stability condition θλj < µj, j = 1, K, we have.

1. The steady-state-probability P0,. given as

P0,. =
$%+ φ(1− δ)

φ
P0,0

2. The steady-state-probability Pj,. given as

Pj,. = σjΨjP0,0, j = 1, K
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Figure 1. State-transition-rate diagram
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where

P0,0 =

(
$%+ φ(1− δ)

φ
+

K∑
j=1

σjΨj

)−1
(8)

with

Ψj =
(θ̄λj + µj)(ξ + φ)%+ φ(µ0 + θλ0) + (θλ0 − µ0)($%+ φ(1− δ))

(µj − θλj)(ξ + φ)

Proof. The proof of this theorem is based on the probability generating functions technique (PGFs). Let

Gj(z) =
∞∑
n=0

znPj,n, j = 0, K (9)

and

G′j(z) =
d

dz
Gj(z), j = 0, K

Multiplying equations (1)-(3) by zn and summing all possible values of n we find

ξz(1− z)G′0(z)−
[
(1− z)(θλ0z − µ0) + φz

]
G0(z)

= −$z
K∑
j=1

Pj,0 −
[
z(1− δ)φ− (1− z)(µ0 + θ̄λ0z)

]
P0,0

(10)

Similarly, we get from equations (4)-(6)[
θλjz − µj

]
(1− z)Gj(z)− σjφzG0(z)

= −σjφz(1− δ)P0,0 −
[
(θ̄λjz + µj)(1− z) +$z

]
Pj,0, j = 1, K

(11)

Taking z = 1 in equations (10) and (11), respectively, we get

φG0(1) = $

K∑
j=1

Pj,0 + φ(1− δ)P0,0 (12)

and
σjφG0(1) = $Pj,0 + σjφ(1− δ)P0,0, j = 1, K (13)

Now, for z 6= 1, equation (10) can be written as follows:

G′0(z)−
[
θλ0
ξ
− µ0

ξz
+

φ

ξ(1− z)

]
G0(z) =

−$
ξ(1− z)

K∑
j=1

Pj,0 +

[
θ̄λ0
ξ

+
µ0

ξz
− φ(1− δ)
ξ(1− z)

]
P0,0 (14)

By multiplying both sides of equation (14) by e−
θλ0
ξ

z(1− z)
φ
ξ z

µ0
ξ , we find

d

dz

(
e−

θλ0
ξ

zz
µ0
ξ (1− z)

φ
ξG0(z)

)
= −$

ξ
e−

θλ0
ξ

zz
µ0
ξ (1− z)

φ
ξ
−1

K∑
j=1

Pj,0

+

[
θ̄λ0
ξ
e−

θλ0
ξ

zz
µ0
ξ (1− z)

φ
ξ +

µ0

ξ
e−

θλ0
ξ

zz
µ0
ξ
−1(1− z)

φ
ξ − φ(1− δ)

ξ
e−

θλ0
ξ

zz
µ0
ξ (1− z)

φ
ξ
−1
]
P0,0

(15)
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Integrating equation (15) from 0 to z, yields

G0(z) =
e
θλ0
ξ

z

(1− z)
φ
ξ z

µ0
ξ

{
−$

K∑
j=1

Pj,0K1(z)−
[
φ(1− δ)K1(z)− µ0K2(z)− θ̄λ0K3(z)

]
P0,0

}
(16)

where

K1(z) =
1

ξ

∫ z

0

e−
θλ0
ξ

s(1− s)
φ
ξ
−1s

µ0
ξ ds, K2(z) =

1

ξ

∫ z

0

e−
θλ0
ξ

s(1− s)
φ
ξ s

µ0
ξ
−1 ds

and
K3(z) =

1

ξ

∫ z

0

e−
θλ0
ξ

s(1− s)
φ
ξ s

µ0
ξ ds

Since P0,. = G0(1) =
∑∞

n=0 P0,n > 0 and z = 1 is the root of the denominator of the right hand side of
equation (16), we get

K∑
j=1

Pj,0 = %P0,0 (17)

with

% =
µ0K2(1) + θ̄λ0K3(1)− φ(1− δ)K1(1)

$K1(1)

By substituting equation (17) into equation (16), we obtain

G0(z) =
e
θλ0
ξ

z

(1− z)
φ
ξ z

µ0
ξ

{
−
(
$%+ φ(1− δ)

)
K1(z) + µ0K2(z) + θ̄λ0K3(z)

}
P0,0 (18)

Next, by substituting equation (17) in equation (12), we find P0,., i.e. the probability that the server is in
working vacation period

P0,. =
$%+ φ(1− δ)

φ
P0,0 (19)

Equation (11) can be written as

Gj(z) =
σjφz(G0(z)−G0(1))− (1− z)[θ̄λjz + µj]Pj,0

(1− z)(θλjz − µj)
(20)

Now, we need to define Gj(z) in terms of P0,0. To this end, we have to express Pj,0 in terms of P0,0.
From equation (13), using equation (19), we have

Pj,0 = σj%P0,0, j = 1, K (21)

Substituting equation (21) into equation (20), we obtain the following.

Gj(z) =
σjφz(G0(z)−G0(1))− (1− z)[θ̄λjz + µj]σj%P0,0

(1− z)(θλjz − µj)
(22)

From equation (22), applying the l’Hospital rule, we get

Gj(1) =
σjφG

′
0(1) + (θ̄λj + µj)σj%P0,0

µj − θλj
(23)
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Then, from equation (10), applying the l’Hospital rule, we find the following:

G′0(1) =
(θλ0 − µ0)G0(1) + (µ0 + θ̄λ0)P0,0

ξ + φ
(24)

Next, substituting equation (19) into equation (24), we get

G′0(1) =
(θλ0 − µ0)($%+ φ(1− δ)) + φ(µ0 + θ̄λ0)

φ(ξ + φ)
P0,0 (25)

Since Pj,. = Gj(1) =
∑∞

n=0 Pj,n > 0, by substituting equation (25) into equation (23) we obtain Pj,., the
probability that the server is busy during phase j, j = 1, K is

Pj,. = σjΨjP0,0, j = 1, K (26)

where

Ψj =
(θ̄λj + µj)(ξ + φ)%+ φ(µ0 + θ̄λ0) + (θλ0 − µ0)($%+ φ(1− δ))

(µj − θλj)(ξ + φ)

Finally, by substituting equations (19) and (26) into equation (8), we get

P0,0 =

(
$%+ φ(1− δ)

φ
+

K∑
j=1

σjΨj

)−1
�

3.1. Some particular cases

Case 1. δ = 0, $ → +∞, θ′ = 0, ξ = 0, and µ0 = 0. The steady-state-probabilities of the system are

P0,. =
λ0 + φ

λ0φΘ

Pj,. =
σj(λ0 + φ)

φ(µj − λj)Θ
, j = 1, K

where

Θ =
λ0 + φ

λ0φ
+

K∑
j=1

σj(λ0 + φ)

φ(µj − λj)
, j = 1, K

The obtained results match with that given in [35].

Case 2. K = 1; λ0 = λj = λ, µj = µ, j = 1, K, δ = 1, θ′ = 0, and µ0 = 0. The steady-state
probabilities are

P0,. =
(φ+ ξ)(µ($C − ξπ0,0)− λ$C)

φC(φµ+ ξ(µ− λ))

and

P1,. =
λφ$C + ξµ(φ+ ξ)P0,0

$C(µφ+ ξ(µ− λ))

where

P0,0 =
φ$C(φ+ ξ)(µ− λ)

(µφ$ + µ$ξ − λ$ξ + µφ2 + µφξ)ξ
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and

C =

∫ 1

0

e
−λ
ξ

s(1− s)
φ
ξ
−1ds

These results coincide with [39][equations (17) and (18)].

Case 3. K = 1; homogeneous arrival rates λ0 = λj = λ, homogeneous service rates µj = µ, j = 1, K,
δ = 0, $ → +∞, θ′ = 0, and µ0 = 0. The steady-state probabilities are as follows:

P1,. =
λφ

µφ+ ξ(µ− λ)

and

P0,. =
(φ+ ξ)(µ− λ)

µφ+ ξ(µ− λ)

which coincide with [3][equation (2.17)].

Case 4. K = 1; λ0 = λj = λ, µj = µ, j = 1, K, δ = 1, $ → +∞, θ′ = 0, and µ0 = 0. The steady-state
probabilities are as:

P0,. =
ξ

φC(1)
P0,0

and

P1,. =
1

µ− λ

(
λξ

φ+ ξ
+
φµC(1)

λ

)
P0,0

where

P0,0 = (µ− λ)

(
λξ

(ξ + φ)
+

(µ− λ)

φ
+
φµ

λ

)−1
and

C =

∫ 1

0

(1− s)
φ
ξ
−1e

−λ
ξ

sds

The obtained results match with [3][equations (5.8) and (5.12)].

Remark 1. In the current study, we assumed that a real system (manufacturing system) is modeled
by a an infinite buffer queue with arrival rate λj and service rate µj. Customers join the system with
some probability θ (the probability of joining the system) and quit the system after getting the service.
Customers may abandon the system due to the absence of the server. Thus, the queueing model during a
normal busy period (j = 1, K) is considered as a classical M/M/1 queue with balking. It is well known
that for this queue, for the steady-state condition to exist, we should have θλj < βµj. Otherwise, we
loose the stable state. On the other hand, during the working vacation period, even if βµj < θλj, the
stationary queue length distribution exists.

4. System performance measures

Performance measures are significant features of any queueing system. Once steady-state probabilities
are known, various measures of system characteristics can be derived.

• The mean system size

E(L) = E(L0) +
K∑
j=1

E(Lj)
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where L0 is the system size when the server is in working vacation period and Lj represents the
system size when the server is in operative phase j for j = 1, K. Then, the mean system size when
the server is in working vacation period is given as

E(L0) = lim
z→1

G′0(z) = G′0(1)

From equation (25), we have

E(L0) =
(θλ0 − µ0)($%+ φ(1− δ)) + φ(µ0 + θ̄λ0)

(ξ + φ)φ
P0,0

The mean system size when the server is in operative phase j, j = 1, K is given as

E(Lj) = G′j(1) = lim
z→1

G′j(z)

From equation (22), we get

E(Lj) =
σjφ

2(µj − θλj)
G′′0(1) +

µjσjφ

(µj − θλj)2
G′0(1) +

µjλjσj%

(µj − θλj)2
P0,0 (27)

where G′′0(1) is obtained by differentiating twice G0(z) at z = 1. Thus, using equation (24), we find

G′′0(1) =
2(θλ0 − ξ − µ0 − φ)

φ+ 2ξ
G′0(1) +

2θλ0
φ+ 2ξ

G0(1) +
2θ̄λ0
φ+ 2ξ

P0,0 (28)

Via equations (19) and (27)-(28), we have

E(Lj) =

[
σjµjφ

(µj − θλj)2
+
σjφ(θλ0 − ξ − µ0 − φ)

(µj − θλj)(2ξ + φ)

]
E(L0)

+

[
µjλjσj%

(µj − θλj)2
+
σjθλ0($%+ φ(1− δ)) + σj θ̄λ0

(µj − θλj)(2ξ + φ)

]
P0,0

• The mean queue size

E(Q) =
∞∑
n=1

(n− 1)P0,n +
K∑
j=1

∞∑
n=1

(n− 1)Pj,n

=
∞∑
n=1

nP0,n +
K∑
j=1

∞∑
n=1

nPj,n −
[ ∞∑

n=0

P0,n +
K∑
j=1

∞∑
n=0

Pj,n − P0,0 −
K∑
j=1

Pj,0

]
= E(L)−

[
1− (1 + %)P0,0

]
• The probability that the server is on working vacation period. From (19), we have

Pwv = P0,. =
$%+ φ(1− δ)

φ
P0,0

• The probability that the server is in busy period. From (26), we get

Pb =
K∑
j=1

Pj,. =
K∑
j=1

σjΨjP0,0
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• The probability that the server is idle during busy period. From (17), we obtain

Pid =
K∑
j=1

Pj,0 = %P0,0

• The probability that the server is working (serving customers) during busy period

Ps = 1− Pwv − Pid

• The mean expected number of customers served

E(CS) = µ0

∞∑
n=1

P0,n +
K∑
j=1

∞∑
n=1

µjPj,n

= µ0

( ∞∑
n=0

P0,n − P0,n

)
+

K∑
j=1

µj

∞∑
n=0

(
Pj,n − Pj,0

)
= µ0(Pwv − P0,0) +

K∑
j=1

µjσj(Ψj − %)P0,0

5. Numerical analysis

To analyze the system parameter impact on the system performance, numerical calculus are carried out
and few ones are presented in the form of figures and tables. For the whole analysis we have chosen:
K = 3, σ1 = 0.3, σ2 = 0.4, and σ3 = 0.3. Then, the following cases are considered:

• Table 1: ξ = 1.0, θ̄ = 0.4, µ0 = 1.2, µ1 = 2.3, µ2 = 2.1, µ3 = 2.6, φ = 1.7, $ = 1.4.

• Table 2: ξ = 0.8, θ̄ = 0.5, λ0 = 1.4, λ1 = 2.1, λ2 = 1.9, λ3 = 2.3, φ = 4.2, $ = 1.1.

• Table 3: ξ = 1.6, θ̄ = 0.4, λ1 = 2.1, λ2 = 1.9, λ3 = 2.3, µ1 = 2.3, µ2 = 2.0, µ3 = 2.5, φ =
2.2, $ = 1.3.

• Figure 2: ξ = 1.0, θ̄ = 0.6, µ0 = 1.2, µ1 = 2.3, µ2 = 2.0, µ3 = 2.6, φ = 1.7, $ = 1.4.

• Figure 3: ξ = 1.0, θ̄ = 0.4, λ0 = 1.8, λ1 = 2.1, λ2 = 1.7, λ3 = 2.3, φ = 1.7, $ = 1.4.

• Table 4 and Figures 4-5: λ0 = 1.9, λ1 = 2.1, λ2 = 1.9, λ3 = 2.3, µ0 = 1.2, µ1 = 2.3, µ2 =
2.0, µ3 = 2.5, φ = 1.9, $ = 3.2.

• Table 5 and Figures 6-7 : λ0 = 1.9, λ1 = 2.1, λ2 = 1.9, λ3 = 2.3, µ0 = 1.2, µ1 = 2.3, µ2 =
2.0, µ3 = 2.5, θ̄ = 0.6, ξ = 2.0.

Table 1. Impact of λ1, λ2 and λ3 on system performance

MWV SWV
λ1 λ2 λ3 E(L) E(CS) Pid Ps E(L) E(CS) Pid Ps

1.9
1.7 2.3 0.9380 1.0665 0.1312 0.4048 1.1147 1.2780 0.2607 0.5246

2.5 0.9958 1.0978 0.1286 0.4170 1.1931 1.3201 0.2524 0.5397

2.0 2.3 1.0632 1.1153 0.1250 0.4329 1.2719 1.3352 0.2426 0.5577
2.5 1.1159 1.1442 0.1226 0.4440 1.3403 1.3728 0.2354 0.5708

2.1
1.7 2.3 0.9911 1.0922 0.1285 0.4172 1.1834 1.3104 0.2524 0.5397

2.5 1.0466 1.1224 0.1259 0.4289 1.2572 1.3502 0.2446 0.5539

2.0 2.3 1.1114 1.1388 0.1226 0.4442 1.3313 1.3637 0.2354 0.5707
2.5 1.1621 1.1668 0.1202 0.4548 1.3960 1.3994 0.2286 0.5831
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Figure 2. Effect of λ0 and λ1 on Rren when λ2 = 1.7, λ3 = 2.3 in MWV and SWV
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Figure 3. Effect of µ0 and µ1 on Rren when µ2 = 2.0, λ3 = 2.6 in MWV and SWV

5.1. Discussion

1. From Tables 1-5, for both single and multiple working vacations, we have.

• With the increasing of λj , j = 0, 3, (E(L)) and (E(Q)) significantly increase, as intuitively ex-
pected. This implies an increases in (Ps) and a decrease in (Pid) which results in the increasing
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Table 2. Impact of µ1, µ2 and µ3 on system performance

MWV SWV
µ1 µ2 µ3 E(L) E(CS) Pid Ps E(L) E(CS) Pid Ps

2.3
2.0 2.4 1.0392 1.2535 0.1931 0.5458 1.1578 1.3646 0.3082 0.6111

2.6 1.0026 1.2559 0.1975 0.5354 1.1171 1.3703 0.3164 0.6007

2.2 2.4 0.9809 1.2651 0.2005 0.5285 1.0959 1.3819 0.3211 0.5948
2.6 0.9415 1.2678 0.2052 0.5173 1.0517 1.3884 0.3300 0.5836

2.5
2.0 2.4 1.0081 1.2579 0.1973 0.5360 1.1240 1.3723 0.3157 0.6016

2.6 0.9700 1.2605 0.2019 0.5251 1.0814 1.3784 0.3243 0.5907

2.2 2.4 0.9473 1.2699 0.2050 0.5179 1.0591 1.3904 0.3293 0.5845
2.6 0.9062 1.2728 0.2100 0.5062 1.0128 1.3972 0.3386 0.5727

Table 3. Impact of µ0 and λ0 on system performance

MWV SWV
µ0 λ0 E(L) E(Q) E(CS) Ps Pwv E(L) E(Q) E(CS) Ps Pwv

1.1
1.2 1.1686 0.6080 1.1585 0.4813 0.3844 1.3949 0.7619 1.3773 0.6025 0.1477
1.5 1.2649 0.6633 1.2440 0.5173 0.3400 1.4203 0.7749 1.3986 0.6094 0.1451
1.8 1.3417 0.7091 1.3090 0.5448 0.3066 1.4456 0.7887 1.4185 0.6160 0.1426

1.5
1.2 1.1346 0.5880 1.1603 0.4691 0.3998 1.3870 0.7578 1.3825 0.6004 0.1484
1.5 1.2323 0.6436 1.2503 0.5060 0.3540 1.4108 0.7696 1.4051 0.6071 0.1459
1.8 1.3105 0.6896 1.3190 0.5344 0.3193 1.4346 0.7823 1.4261 0.6134 0.1436

1.9
1.2 1.1022 0.5691 1.1618 0.4574 0.4145 1.3800 0.7541 1.3872 0.5986 0.1491
1.5 1.2012 0.6249 1.2563 0.4952 0.3675 1.4023 0.7649 1.4109 0.6050 0.1467
1.8 1.2805 0.6710 1.3287 0.5244 0.3316 1.4247 0.7765 1.4331 0.6111 0.1445

Table 4. Impact of ξ and θ̄ on system performance

MWV SWV
ξ θ̄ E(L) Rren Ps Pwv E(L) Rren Ps Pwv

1.4
0.3 1.8039 0.6227 0.5576 0.3711 1.9050 0.5625 0.6177 0.2399
0.6 0.7811 0.9223 0.3900 0.5146 0.8393 0.8611 0.4609 0.3382
0.9 0.4420 1.1094 0.2878 0.6043 0.4811 1.0545 0.3614 0.4007

2.4
0.3 1.6506 0.7117 0.5169 0.4147 1.8240 0.6094 0.6000 0.2510
0.6 0.7079 1.0057 0.3555 0.5558 0.7989 0.9075 0.4459 0.3477
0.9 0.4086 1.1800 0.2617 0.6396 0.4629 1.0953 0.3504 0.4076

3.4
0.3 1.5300 0.7878 0.4827 0.4520 1.7691 0.6446 0.5872 0.2590
0.6 0.6492 1.0751 0.3272 0.5902 0.7696 0.9428 0.4349 0.3546
0.9 0.3782 1.2388 0.2402 0.6690 0.4471 1.1269 0.3421 0.4128

Table 5. Impact of φ and $ on system performance

MWV SWV
φ $ E(L0) Pid Ps Pwv E(L0) Pid Ps Pwv

1.8
1.2 0.1150 0.1472 0.5215 0.3313 0.0551 0.2382 0.6030 0.1588
1.7 0.1329 0.1201 0.4972 0.3828 0.0705 0.2149 0.5821 0.2030
2.2 0.1452 0.1014 0.4804 0.4182 0.0831 0.1958 0.5650 0.2393

2.1
1.2 0.1015 0.1525 0.5387 0.3088 0.0460 0.2451 0.6148 0.1401
1.7 0.1179 0.1251 0.5162 0.3588 0.0593 0.2229 0.5966 0.1805
2.2 0.1293 0.1060 0.5005 0.3935 0.0704 0.2044 0.5814 0.2142

2.4
1.2 0.0907 0.1567 0.5524 0.2909 0.0391 0.2508 0.6238 0.1254
1.7 0.1059 0.1291 0.5314 0.3395 0.0507 0.2296 0.6078 0.1626
2.2 0.1165 0.1098 0.5167 0.3735 0.0605 0.2117 0.5942 0.1941

of the mean number of customers served (E(CS)).
• With the increasing of µj , j = 0, 3, the mean system size (E(L)) decreases, as it should. This

yields to the decreasing of (Ps) and (Pid). Therefore, the mean number of customers served
significantly increases. Further, obviously, the probability that the server is in working vacation
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Figure 4. Effect of ξ and θ̄ on E(CS) in MWV and SWV
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Figure 5. Effect of θ̄ and ξ on E(L0) in MWV and SWV

period increases with µ0.

• As the vacation rate φ (resp. waiting server rate$) increases, both (Pwv) and (E(L0)) decrease
(resp. increase). This results in the increasing (resp. decreasing) of (Ps) and (Pid). This is quite
reasonable, the larger the vacation rate φ (resp. the waiting server rate $) the greater (resp. the
smaller) (Ps) and (Pid).

• When ξ and the probability of balking θ̄ increase, the system characteristics (Rren) and (Pwv)
increase. While (E(L)) and (Ps) decrease. Obviously, the greater the impatience rate and
the balking probability, the smaller the mean system size and the probability that the server is
serving customers during regular busy period and the larger the average reneging rate.
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Figure 6. Effect of φ and $ on E(CS) in MWV and SWV
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Figure 7. Effect of $ and φ on Rren in MWV and SWV

2. From both single and multiple working vacations, we have.

• From Figures 2-3, the average reneging rate (Rren) increases with λj and decreases with µj,
j = 0, 1. Obviously, the larger the average arrival rate (resp. the service rate), the higher (resp.
the smaller ) the system size and the bigger (resp. the lower) the average rate of reneging.

• From Figures 4-5, the increasing of ξ as well as θ̄ implies a decrease in the mean number of
customers served, which is quite reasonable; the larger the impatience rate (either balking or
reneging) the higher the mean number of balked and reneged customers and the smaller the
mean number of customers served. In addition, the increasing of balking probability implies a
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decrease in the probability of busy period which results in the increasing of the mean system
size in the working vacation period (E(L0)). While this system characteristic decreases with ξ,
as it should be.

• From Figures 6-7, when φ increases the server rapidly switches to the normal busy period
at which the customers are served with a high rate. Therefore, the average rate of reneging
decreases and the mean number of customers served monotonically increases. Nevertheless,
the increasing of the waiting server rate $ implies a decrease in the probability of busy period.
Thus, the server goes faster on a working vacation wherein the customers are served with a
smaller rate. In addition, during working vacation period (phase 0) customers may get impatient
and leave the system. This implies an increase in the average rate of reneging and a decrease in
the mean number of customers served.

3. From Tables 1-5 and Figures 2-7, we can conclude that (E(L)), (E(Q)), (Ps), (Pid) as well as
(E(CS)) in multiple working vacation (MWV) policy are less than those in the single working
vacation (SWV) policy. While, (E(L0)), (Pwv), and (Rren) in the SWV policy are smaller than
those in the MWV policy.

In conclusion, we can say that the single working vacation model has better performance measures than
the multiple working vacations model. The results obtained perfectly agree with our expected intuition.

6. Conclusion

In the present work, we analyzed the phenomenon of impatience (balking and reneging) in an infinite-
space single server Markovian queue under both single and multiple working vacation policies, multi-
phase random environment, and waiting server. We aimed to establish theoretical foundations for ap-
plications and obtained explicit computational expressions for system characteristics. Our analysis ap-
proach was based on the use of probability generation functions (PGFs). By solving these equations, we
have been able to determine useful performance measures. Then, using the R program, we carried out a
numerical analysis to show the impact of different system parameters on system performances demon-
strating the applicability of the theoretical results obtained. Due to the diverse potential applications of
the queueing model discussed in this paper, we expect that the results can be applied to more convenient
queuing systems.
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