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Abstract

In this article, the optimal loading of homogeneous marine cargo is considered. A mathematical formulation in terms of
a mixed-integer linear program can be given. Still, the level of complexity turns out to be too high to perform full-scale
computations. On the one hand, the reasons for this are the multitude of variables and constraints. On the other hand, feasible
solutions to such problems may often be economically unacceptable or simply empty. Therefore, a heuristic is presented,
according to which the relaxation of the limiting conditions influencing the solution’s feasibility and its economic profitability
was parametrized. Under this heuristic, shifting the deadlines of selected orders is allowed. Also, the assignment of orders
to vessels is separated from the allocation of vessels to piers in loading and unloading ports. The solution presented can be
easily generalized by adding additional restrictions or features like indirect vessels, founding cost, or differentiation between
materials.
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1. Introduction

Marine transportation drives more than 80% of global trade volume, moving 11.08 billion tons of goods
each year [22]. From the deliverer perspective, including order handling, loading, marine transport, and
unloading, require automation and optimization at every stage of the cargo flow process. Savings from
such optimization are calculated in millions of dollars per year. Transport and logistics processes cover
single-criterion optimization like determination of the optimal route of the ship [5, 7], minimization of
collision risk [24], ship loading for the purpose of its stabilization [3, 23], logistics of cargo transportation
between ports [2], optimization from the port perspective [6], etc. Most optimization problems related
to marine operations are demanding for at least two reasons. The first one is the need to get results
in near real-time. It significantly narrows the range of possible approaches to the problem. Therefore,
heuristics [21] or genetic algorithms [13] are often used. The second aspect of the difficulty of the marine
optimization problems, closely related to the first one, is their high computational complexity. The berth
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allocation could be given as an example of such a problem. There are many variants of this problem
(see [10], [9]), but each of them is affected to a greater or lesser degree by the complexity of the class of
NP-complete problems.

An overview of the problems and static and dynamic optimization methods in marine transport can
be found, for example, in [16] or [8]. The extensive range of issues related to this subject translates into
many possible objectives, from optimization of vessel arrival times, through the minimization of vessel
total service times or vessel load maximization, to minimization of fuel consumption or maximization of
berth productivity. It often results in the inability to choose one correct optimization criterion. This is why
the marine logistics is an excellent field for multi-criteria optimization, e.g. minimization of transport
cost with a minimum delivery time [25, 4], route selection [12], or cost with the service reliability and
the shipping emission [20]. Various applications of multi-criteria decision making (MCDM) in maritime
transportation can be found, for example, in [15] or [19].

In this article, optimization is limited to cargo loading, where the problems of vessel stabilization
or load maximization are neglected. Therefore it is suitable for relatively homogeneous materials like
wood pellets [1], gas [17] or oil [18]. This optimization formulation is also appropriate for the primary
aluminum transportation problem. Real data related to this issue were used to verify the proposed so-
lution. The complexity of the problem turns out to be so high that optimization in terms of the linear
programming problem is not possible. The reason is not the difficulty of the mathematical formulation
of the problem but the multitude of variables and constraints. Secondly, for real-world data, the set of
feasible solutions is often economically unacceptable. The multi-criteria strictly defined optimization
problem was transformed into a relaxation of the original problem, where selected constraints were re-
laxed. The goal of this article was to present a heuristic, which splits the optimization problem into highly
parametrized, sequentially connected subproblems. Theoretically, an exact solution of each subproblem
does not have to be equivalent to the global optimum of the original problem, but getting into account
daily granulation of the problem and highly probable delays during the vessel transportation, the solution
approximation returned by heuristic is close enough, which was confirmed by the real-data computations.
The advantage of this approach over, for example, genetic algorithms (see [14]) manifests itself in shorter
computation time, easy generalization by adding additional requirements, but most of all, more accurate
and fully interpretable results thanks to the deterministic nature of the solution.

This article is constructed as follows. After the introduction, there is a section with the problem for-
mulation and some comments concerning the complexity of the real-life data. The arguments and the
examples of the situation, where a feasible solution does not exist are given. The following section de-
scribes the heuristic method of finding an approximation of the solution. The fourth section concentrates
on the computer calculations on the prepared test examples. A sensitivity analysis was also performed
concerning selected parameters. This article ends with a discussion about the possibilities of generaliza-
tion of the proposed solution and its applicability in other transport and logistics processes.

2. Problem formulation

The problem discussed in this article should be considered from at least three points of view. From the
end consumer perspective, the delivery should be simply on time. The role of the port management in
the logistic transportation process is to ensure the availability of the pier with specific parameters at a
given time and the organization of loading and unloading works. Finally, from the deliverer point of
view, the goal is to minimize the costs of delivery, including the storage in the port and the rental of
vessels, meeting the expectations of the end customer and the infrastructure capabilities of the ports. The
formulation of the discussed problem comes down to the definition of constraints. For the sake of clarity
of the description, we will limit ourselves to presenting the issue in a simplified version, disregarding the
specific requirements related to the transport of aluminum. Information on possible generalizations will
be provided in one of the sections.
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The set of assumptions will be presented first in a descriptive form, and then the mathematical formu-
lation of the problem will be given. We consider the following assumptions.

1. Each order must be delivered within deadline_from and deadline_to.

2. The time of loading and unloading depends on the pier and the size of the vessel.

3. Loading and unloading take place only on working days (varies by port).

4. Marine transport time depends on the distance between the source and destination port and the size
of the vessel.

5. Piers are limited by vessel size, and their availability is determined by the loading and unloading
schedule.

6. There can be only one vessel loading or unloading on the pier each day.

7. Orders cannot be split between vessels.

8. Cargo storage charges depend on the port, orders volume, and the number of storage days.

9. Vessels are shipped directly to a destination port (without intermediate ports).

It is worth elaborating on the last two assumptions. Cargo storage charges may be charged on the
loading or unloading port side. We can therefore decide on one of the two solutions. Either the order is
shipped to the destination port before deadline_from, and there are storage costs in the destination port.
Either we wait with the shipment to get the order within specified deadlines, and the storage costs are
paid at the loading port. The decision should be made based on the different amounts of storage costs in
ports, the availability of vessels and piers, and the possibility of combining with other orders.

The ninth assumption is the restriction in the number of destination ports for one vessel. A sequence of
intermediate vessel destination ports is not obvious. On the one hand, shipping to the nearest destination
port first would be cheaper, but on the other hand, the deadlines for some orders may not be fulfilled
choosing this route.

To define the objective function, two types of costs must be considered:

(A) storage costs depending on the port, orders volume, and storage time,

(B) vessel costs depending on the vessel capacity and the number of rental days (including loading and
unloading time).

Minimizing the sum of these two types of costs is the basis of the optimization problem that needs to
be solved. Both objective function and set of constraints may be defined in terms of the mixed-integer
linear programming problem. The linear optimization model is the mathematical formulation of the
described constraints and costs is presented in Appendix A. In the remaining part of this section, we will
introduce the notation and discuss the complexity of the problem.

Let O be the set of orders, V set of vessels, P set of ports, RP set of piers in port P , and T set of
days covering deadlines of all orders and dates of orders availability in the loading port. The presented
in the appendix mathematical formulation can be transformed into the mixed-integer linear optimization
problem by adding extra binary variables and exploring the so-called big M method [11]. The problem,
therefore, lies not in difficulty in a formulation as a linear model but the high complexity and possible
lack of feasible solutions. First, let us look closer at the matter of complexity. Ignoring the issues of many
additional variables needed to formulate the problem in linear form, let us consider the case where there
are 500 orders, 50 vessels, 20 ports with only two piers in each of them, and the time horizon of 90 days.
The set of variables has a cardinality of 1.26 billion for these numbers. Detailed calculation is given in
Table 1. With additional variables required to apply the big M approach, the size of the optimization
problem could be even more if we take the number of variables as the measure of complexity. The
number of constraints needed for the formulation is even greater. Therefore, finding the solution in a
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Table 1. Estimation of the number of variables in the linear optimization for an example assumptions

Variable Indexes Count
xdo,v,k |T | × |O| × |V| × (2× |P|) = 90× 500× 50× 40 90 000 000

αd
o,v,k |T | × |O| × |V| × (2× |P|) = 90× 500× 50× 40 90 000 000

ydo,v,k |T | × |O| × |V| × (2× |P|) = 90× 500× 50× 40 90 000 000

βd
o,v,k |T | × |O| × |V| × (2× |P|) = 90× 500× 50× 40 90 000 000

cdo,P |T | × |O| × |P| = 90× 500× 20 900 000

δdv,k |T | × |V| × (2× |P|) = 90× 50× 40 180 000

εdv,k |T | × |V| × (2× |P|) = 90× 50× 40 180 000

γdo,v,P1,P2 |T | × |O| × |V| × |P| × |P| = 90× 500× 50× 20× 20 900 000 000

sum 1 261 260 000

reasonable time is not possible, if we consider the solution defined as a result of the mixed-integer linear
optimization problem.

Besides the time complexity, which could be potentially solved by, for example, parallelization of the
computations or increasing the computer power, we have to deal with the more serious problem of lack
of feasible solutions. In the real-world input data, the combination of deadlines preferred by the client,
availability of aluminum in the loading ports, and availability of vessels, can sometimes result in an empty
set of solutions. However, let us suppose that some feasible solution exists. The feasibility is understood
in mathematical terms. Meanwhile, business feasibility is a completely different matter. Theoretically, it
may be possible to ship each order on a separate vessel. It, however, would be extremely unprofitable.
What is the remedy for these problems? One way is to reformulate the problem as a multiobjective
optimization problem, where the balance between cost and orders delays is considered. Of course, the
size of the optimization problem and its complexity will still be an issue. An alternative is to relax some
of the assumptions by allowing for exceeding deadlines or simply accepting the unavailability of the
possibility of shipping. This approach became the basis of heuristics, which allows finding the solution’s
approximation within a reasonable time. The heuristics construction includes splitting into optimization
subproblems. The composition of the optimal solution of each subproblem does not necessarily have to
translate into an optimal solution of the entire problem. However, the computational speed-up due to the
much smaller subproblems outweighs the lack of optimal solution, which would be anyway useless in
terms of business. The idea of the proposed heuristic and some details of the implementation are given
in the next section of this article.

3. Solution algorithm

Difficulty in solving real-life-sized problems was noticed, among others, in [5], where the optimal solu-
tion may be found for a fleet size of up to 9 ships. For larger-scale problems, a heuristic was proposed.
Analogously, the optimisation problem of aluminum transportation much exceeds the acceptable com-
putation sizes. Moreover, the existence of a feasible solution is questionable. In this section, we will
propose a heuristic algorithm, which allows getting a good approximation of the solution in a reasonable
time, on the condition that some assumptions are relaxed, especially those related to orders’ deadlines.

The heuristic algorithm may be split into five stages:

Stage I. Filtering the orders and correcting the deadlines.
Stage II. Preliminary order grouping per destination port.
Stage III. Combine group of orders into vessels.
Stage IV. Iterative orders regrouping between vessels (per destination port).
Stage V. Pier allocation.

Each of the stages is described in the remaining part of the section.
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Some of the client’s expectations are unrealistic and can not be fulfilled. The first stage of the algo-
rithm comes to filtering the set of orders, where orders with deadlines or availability in the loading port
exceeding the assumed time horizon are removed. Also, at this stage, the correction of deadlines, which
are obviously not feasible, is made. For example, if the first day of order’s availability in the loading port
increased by the minimal number of days needed for transportation between source and destination port
is greater than deadline_to, then deadlines are redefined to meet the realistic loading and transportation
time.

Some concessions were made to reduce the dimension of the problem. One of them was the separa-
tion of the grouping orders into vessels from the allocation of piers. The second simplification was the
parallelization of calculations related to the loading ports – for each of them, stages 2-4 were carried out
independently. After filtering and correcting the orders, preliminary grouping for each destination port
(and loading port) is performed. It is the second stage of the algorithm. It needs to be emphasized that
grouping orders into packages is not equivalent to assigning orders to vessels. The volume of the package
is often less than the minimum cost-effective cargo capacity of the vessel. Grouping of orders is done
based on the adopted measures of similarity and dissimilarity:

• similarity index – number of common possible delivery dates of both orders divided by the total
number of potential delivery dates of any of the given orders,

• dissimilarity index – one minus similarity index.

The heuristic of a preliminary grouping of orders into packages exploring these measures is to com-
bine orders with a similarity index at least similarity_limit and dissimilarity index lower than dissimilar-
ity_limit.

At this stage, the heuristic could be considered an optimization process because the maximum cargo
capacity of vessels must be taken into account. This limitation forces a restriction in grouping into
packages, and therefore, in fact, package content optimization is needed. However, another approach was
proposed. A greedy combination algorithm on a list of orders sorted in terms of both similarity measures
gives a quick solution, which could be changed at further stages of the heuristic. This compromise
is based on the speed of the greedy approach allowing one to find an acceptable solution quickly and
then potentially iteratively improve it. This stage is extremely sensitive to input data, mainly to order
deadlines.

To illustrate this stage, consider the example of five orders with characteristics (volume, first avail-
ability day in loading port, beginning and ending deadline for delivery) given in Table 2. For the sake of
simplicity, let us assume that there are no holidays in both the loading and unloading ports, and all days
are working days. Based on this assumption, the similarity index for orders O1 and O3 is calculated by
listing the days on which the vessel’s delivery with these two orders can be made. All potential delivery
dates are within the range 2022-02-01 and 2022-04-01, but the only possible delivery date is 2022-03-01.
Therefore, the similarity index is calculated by dividing the number of common possible delivery dates
(1 day) by the total number of potential delivery dates (59 days) equal to 0.02. Similarity indexes for
each pair of orders listed in Table 2 are given in Table 3, whereas dissimilarity indexes in Table 4.

Table 2. Basic characteristics of exemplary orders with the same source and destination ports

order ID volume (VOL) availability date (AVB) beginning deadline (FROM) ending deadline (TO)
O1 500 2022-01-01 2022-02-01 2022-03-01
O2 500 2022-01-01 2022-02-01 2022-03-01
O3 2000 2022-01-01 2022-03-01 2022-04-01
O4 3000 2022-01-01 2022-03-10 2022-04-01
O5 100 2022-01-01 2022-03-01 2022-05-01

Assuming the value of the similarity_limit is equal to 0.7, and the value of dissimilarity_limit is equal
to 0.5, we get three packages of orders: in the first package, there are orders O1 and O2 (similarity index
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equal to 1.00), in the second package orders O3 and O4 (similarity index equal to 0.71), and in the third
package there is the single order O5, which has a similarity index with other orders equal only 0.01
(orders O1 and O2), 0.51 (order O3), and 0.42 (order O4).

Table 3. Similarity indexes for pairs of orders described in Table 2

similarity index O2 O3 O4 O5
O1 28

28 = 1.00 1
59 = 0.02 0

59 = 0.00 1
89 = 0.01

O2 — 1
59 = 0.02 0

59 = 0.00 1
89 = 0.01

O3 — — 22
31 = 0.71 31

61 = 0.51
O4 — — — 22

52 = 0.42

Table 4. Dissimilarity indexes for pairs of orders described in Table 2

dissimilarity index O2 O3 O4 O5
O1 0.00 0.98 1.00 0.99
O2 — 0.98 1.00 0.99
O3 — — 0.29 0.49
O4 — — — 0.58

The third stage concerns the combination group of packages from the second stage into vessels. At this
stage, the composition of packages is not changed, and the selected packages to the common destination
port are combined. Joining packages is an iterative process carried out in pairs. Two packages that satisfy
the constraints (mainly deadlines, aluminum availability in loading port, and vessels limitation of cargo
capacity) are combined. The process defined in this way is quick but far from optimal. The reason is an
unspecified order of packages’ pairs under consideration. Let us consider an example of three packages
package1, package2, and package3 with the total size of 1000 t, 2500 t, and 3000 t, respectively. Let
us also assume the maximum cargo capacity of vessels / piers is 6000 t. Compare two situations with
different order of packages’ pairs:

1. package1 + package2 with volume 3500 t and package3 with volume 3000 t,

2. package2 + package3 with volume 5500 t and package1 with volume 1000 t.

We have two vessels with comparable volumes (3000 t and 3500 t) in the first case. This is the desired
solution in terms of costs. The second case represents a highly disproportionate distribution of the cargo
sizes (5500 t and 1000 t). In this case, from a purely economic point of view, the shipment with only
1000 t is unprofitable and would not be shipped. Therefore, in the first case, we are ready to ship all
three packages (total of 6500 t), but in the second case, only package2 and package3 will be delivered on
time (total of 5500 t). This example shows the possible suboptimality, which – similar to the non-optimal
decisions in stage two – could be corrected on the fourth stage of the algorithm. Also, after this stage,
some of the orders and packages of orders from the previous stage will not be allocated to vessels.

The next stage of the heuristic is an opportunity to improve the solution obtained in the third stage.
Improvement is achieved by iterative regrouping between vessels. This process may be fully parallelized
by separate computation for each destination port. In each iteration step, orders on two selected vessels
are analyzed. Checking every possible allocation of orders between the two vessels is considered to
minimize overall costs (with all constraints fulfilled). In cost estimation, the most advantageous pier
allocation is assumed, even if this assumption turns out to be unfulfilled in the last stage of the algorithm.
It is also worth noticing that shipping vessels at the first available date are not always the best solution.
There may be a situation where shipping a vessel on a given day will mean waiting several days in the
destination port due to non-working days. In that case, a cheaper solution would be to send the vessel
later to arrive at the port of unloading on a working day following the said non-working days.

The number of possible orders assignments to vessels depends on the number of orders on these
vessels and grows exponentially. The exact numbers for selected order quantities on two vessels are
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given in Table 5. Computations in the case with twenty orders are well within the capabilities of the
modern computer machines (1 048 576 possibilities), but with a total of 30 orders on two vessels much
more difficult (over billion cases). Therefore, not every possibility is considered at this stage of the
heuristics, and a max_allocation_number parameter is defined, denoting the maximum allowable number
of possibilities considered. To increase the probability of finding the optimal assignment, possibilities are
checked in a specific order, beginning with those with the lowest differences of cargo volumes between
vessels.

Table 5. Number of possible orders assignments between the two vessels depending on the number of orders

Total number of orders on two vessels Number of possible assignments
10 1 024
20 1 048 576
25 33 554 432
30 1 073 741 824
35 34 359 738 368

There are three possible sources of non-optimality at this stage. The first one is similar to an issue
raised in the previous stage: pairwise analysis does not have to give the optimal result and strongly
depends on the order of pairs. The second source of non-optimality is the simplifying assumption of pier
availability. The key argument in favor of using this approach is to reduce the dimension of the problem,
which implies a noticeable computational speed-up. The third source of potential lack of optimality is
introducing the parameter max_allocation_number. In an obvious way, it shortens the computation time
but possibly omits the proper assignment of orders to vessels.

The last stage is devoted to the pier allocation. Till this point, for each loading port, the sub-optimal
set of vessels with assigned orders has been designated. Some of the orders remained unmerged with
other orders or combined in the form of packages from the second stage because they turned out to be too
little similar to the other packages to be jointly loaded onto one vessel. A configurable parameter gives
the minimum cargo volume that would be profitable to ship. The rest of the orders are assigned to the
vessels in an assumed way to be the least costly. This assumption is based on piers’ availability in loading
and unloading ports. However, this assumption will be perhaps not satisfied because computations for
each loading port were carried out independently, and collisions in piers are very likely. Therefore, the
obtained solution probably will not be optimal. Still, due to the splitting problem into the assignment of
orders to vessels and allocation of piers separately, we have reason to expect that we will get the result in
a finite and reasonable time (depending primarily on the value of the parameter max_allocation_number).

Classic optimization of piers allocation takes into account the availability of piers in loading and
unloading ports. In case of a lack of matching between available piers and deadlines for orders assigned
to the vessel, the result would be no solution. This situation is very likely, therefore instead, optimal
allocation of vessels is done in a greedy algorithm by sequential allocation per individual loading port,
where optimization is made within the loading port so that the total cost is the lowest. The result may
depend on the order of loading ports considered at this stage. Suppose the proper allocation of all vessels
does not exist for some loading port. In that case, the deadlines of orders in vessels, for which the
available pier was not found are extended for a fixed number of days, and the optimization process for
this particular loading port is repeated. This approach must end eventually because a shift of deadlines by
the appropriate number of days guarantees piers availability. Also, after extending the deadlines, some
vessels may be combined into a single vessel.

To illustrate the stages from III to V, we use orders O1-O4 described in Table 2. After the second
stage, we have two packages of orders, which are in stage III combined into vessels:

(A) orders O1 and O2 with a total volume of 1000 t,

(B) orders O3 and O4 with a total volume of 5000 t.
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Let us complete the input data for this exemplary problem with the following information:

• 10 days for delivery from source port to destination port (DAYS) regardless of the size of the vessel,

• the maximum speed of loading and unloading (SPEED_LOAD, SPEED_UNLOAD) is equal to
10 000 t, which allows to load and unload all considered orders in one day,

• the price per day of use the vessel is equal to 750 USD for small vessel (cargo volume smaller than
1000 t), 1000 USD for medium vessel (cargo volume between 1000 t and 2000 t), and 1300 USD
for big vessel (2000 t cargo volume or more),

• the price per day of cargo storage in the loading port (STORAGE_COST_PER_TONNE) is equal
to 0.01 USD per tonne.

Using this input data, we can calculate the cost of shipping two vessels from the exemplary problem,
assuming that they are shipped on the first possible day, which, in the considered case, means 2022-01-
19 and 2022-02-25 as a beginning of loading vessel (A) and (B), respectively, (variant 1 of shipment).
Detail cost are presented in Table 6.

Table 6. Storage cost for variant 1 of the exemplary problem with orders O1-O4 described in Table 2

order IDs storage begin storage end storage days storage cost
O1 2022-01-01 2022-01-18 17 85
O2 2022-01-01 2022-01-18 17 85
O3 2022-01-01 2022-02-24 54 1080
O4 2022-01-01 2022-02-24 54 1620

Table 7. Shipping cost for variant 1 of the exemplary problem with orders O1-O4 described in Table 2

vessel loading begin unloading end shipping days shipping cost
(A) 2022-01-19 2022-01-31 12 900
(B) 2022-02-25 2022-03-09 12 15 600

The total cost of orders shipping case in variant 1 equals 27 470 USD including 2 870 USD storage
cost and 24 600 USD shipping cost. In the fourth stage, regrouping vessels (A) and (B), should result in
the vessel (C) with orders O1-O3 (volume 3000 t) and vessel (D) with single order O4 (volume 3000 t).
The best possible loading date begins 2022-02-16 for the vessel (C) and 2022-02-25 for the vessel (D).
Denote this as variant 2 of the exemplary problem.

Table 8. Storage cost for variant 2 of the exemplary problem with orders O1-O4 described in Table 2

order IDs storage begin storage end storage days storage cost
O1 2022-01-01 2022-02-14 44 225
O2 2022-01-01 2022-02-14 44 225
O3 2022-01-01 2022-02-14 44 900
O4 2022-01-01 2022-02-24 54 1620

The total cost of orders shipping case in variant 2 equals 26 970 USD including 2 970 USD storage
cost and 24 000 USD shipping cost. Comparing to variant 1 of shipment, storage costs are slightly higher
(2 870 vs. 2 970 USD), but shipping costs have decreased from 24 600 to 24 000 USD. Therefore, total
costs are lower in variant 2, so this variant will result from stage IV of the heuristics. In the last stage,
pier allocation is to be done. To illustrate possible non-optimality of the heuristics result despite the
optimality at every stage, let us assume that there is no free pier in the loading port on the day 2022-02-
16, which is the only date when orders O1-O3 can be shipped subject to deadlines constraints. The only
option is to load orders the day before at 2022-06-15. However, this means that the vessel has to be used
for one day longer, and the demurrage at the destination port will be incurred. Therefore, the total cost
would increase to 27 940 USD, which is more than the costs of variant 1.
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Table 9. Shipping cost for variant 2 of the exemplary problem with orders O1-O4 described in Table 2

vessel loading begin unloading end shipping days shipping cost
(C) 2022-02-16 2022-03-01 12 13 000
(D) 2022-02-25 2022-03-09 12 12 000

The goal of the heuristic is to reduce the problem complexity and speed up the computations. The
idea behind the proposed algorithm is, on the one hand, to separate assignments of orders to vessels from
allocation of piers, and on the other, to parallelize the computations by executing them per loading port.
The stages of the algorithm described in this section allow obtaining solutions that compromise the speed
of calculations and optimality. This approach has some limitations but is also flexible regarding ease of
generalization. These issues will be discussed in more detail in the next section.

4. Limitations and possibility of generalizations

A large number of presented assumptions were introduced to, on the one hand, increase the readability
of the heuristics description, and on the other hand, to show the multitude of aspects that may be taken
into account during the calculations. From the nine assumptions presented in Section 2, only the last one
should be considered as a limitation that can be easily lifted. The approach presented in this article allows
adding additional restrictions or features easily. Some of the most common or desired requirements are
listed in this section.

• Restriction to one destination port may be lifted. For instance, we can allow for vessels with two
destination ports. It is a realistic assumption because shipping orders by two different vessels si-
multaneously to two ports that are relatively close to each other is not economically justified. One
significant change in the heuristic is needed to consider such a modification. Stage III should be
split into two substages: the first is combining per destination port groups of orders into vessels,
and the second is trying to combine groups of orders to different destination ports into common
vessels. The second substage is not obvious because the order in which successive pairs are dealt
with impacts the result firmly.

• Besides storage and transportation costs, founding costs may be added to the optimization problem.
Founding costs are calculated based on order volumes and handling time and are charged until the
order is delivered. This kind of change is easily implemented in the heuristic by modifying the
objective function.

• In the basic problem formulation, aluminum cargo is homogenous. Still, there are different types
of materials collectively referred to as aluminum, e.g. primary aluminum, billets, rolling slabs,
primary foundry alloys, or wire rods. Adding additional restrictions or requirements is possible and
extends the method’s applicability. Also, the heuristic should be appropriate not only for aluminum
but for all homogeneous types of cargo like wood pellets, gas, or oil.

• It is possible to differentiate according to the client’s requirements. For example, different costs for
delays in delivery per client or specific preferences for joint or separate shipments can be added.
These new constraints have to be included at each stage of the heuristic.

• Most of the parameters are typical for the ports but can be differentiated per port or even pair of ports
(loading-unloading). This kind of generalization can be used for the parameter max_allocation_nu-
mber. Depending on the order volumes for some ports, setting this parameter higher to avoid ship-
ping small vessels would be reasonable. In contrast, only small vessels have a chance to be shipped
for others due to the lower volumes of aluminum ordered by clients.

• Cost parameter V ESSEL_COST_PER_DAY depends only on a vessel, but prices go up in pe-
riods of high demand. Therefore, it would be wise to add this relationship to the problem. This
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change is easy in terms of implementation and will have a marginal effect on the speed of calcu-
lations. Analogously, dependence from the date, besides the port, can be added for STORAGE
_COST_PER_TONNE.

It needs to be emphasised that the proposed heuristics is dedicated to the homogeneous types of
cargo. Theoretically, it could be extended to all kinds of cargo. Still, its original form neglects many
issues related to the practical operation during loading in the port like vessels stability, distribution of
load along the vessel, or cargo separation due to carriage of cargo with different chemical and physical
properties. All mentioned issues affect the cargo loading rate and assignments of orders to vessels, but
in the case of homogeneous types of cargo, their impact on loading is relatively low. In this context,
the proposed heuristics do not address all aspects of loading marine cargo, although it does offer the
possibility of integrating additional restrictions or requirements.

In the remaining part of this section, some remarks about the possibility to improve or speed up the
heuristic are given. First of all, postponement of delivery deadlines for selected orders may provide better
solutions. There is no clear indication of which orders should be subject to this procedure, but a careful
analysis of historical data can be provided as a guide.

Secondly, at the pier allocation stage, shifted order deadlines may create the possibility of merging
vessels, which was impossible for the original deadlines. Therefore, an additional stage may be added
after the pier allocation stage, with vessel merging and reallocating piers. Theoretically, this stage should
be repeated until no improvement by merging vessels is possible.

Also, many calculations can be done in parallel. It is essential in the most complex, in terms of
computation time, the fourth stage of the heuristic. Each allocation between the two vessels may be con-
sidered independently. Including the parallelization libraries in the implementation could be challenging
due to the need to consider the parameter max_allocation_number. Using multiprocessor machines we
would like to terminate the computations in all related threads or processes (depending on the operating
system).

5. Conclusions

The logistics of homogeneous marine cargo loading and transportation due to high complexity in terms
of an optimization problem should be considered problematic. Still, the potential for reducing costs is
enormous. The heuristic presented in this article addresses the issue of high computational complexity
and the need to relax the assumptions related to unrealistic customer expectations. Following all re-
strictions, the optimization problem would not have any feasible solution. Allowing to shift deadlines
of selected orders makes it possible to get the satisfactory assignment of orders to vessels and vessels
to piers in loading and unloading ports. This separation of the stages with these allocations is the main
reason behind reducing the problem’s complexity. The second speed-up idea is the approach where some
rough approximation of the solution is found, and then many tries to improve it are performed.

The critical aspect of the heuristic is the answer to how far the result from the optimal solution is.
There are two main reasons for the non-optimality of the solution. The first reason stems from an idea
of separation of assignment of orders for vessels from the allocation of piers to vessels. The compo-
sition of optimal outcomes of each subproblem does not necessarily translate into the optimality of a
whole problem. The second reason is the incredible computational complexity of the fourth stage of the
algorithm, where potentially not all combinations can be checked. Therefore, depending on the value
of the max_allocation_number parameter, we can be closer or further from the optimal solution of this
subproblem.

The presented solution to the cargo loading problem is easily parameterizable and prone to generaliza-
tion in the form of additional restrictions or features. Even exploring parallelization potential, sufficiently
large computing power is still needed for real-life situations. By properly calibrating the heuristic param-
eters, a solution that allows for significant savings for the manufacturer can be obtained in a reasonable
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time. The future works in this area can be focused on the preliminary steps where a more advanced
approach is used to correct the order deadlines. It should translate into much faster computations and
provide a starting point for developing validation rules.
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A. Appendix

Let us introduce the following definitions:
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• V OL(o) – volume of order o ∈ O (in tonnes),

• LP (o) – loading (source) port of order o ∈ O,

• UP (o) – unloading (destination) port of order o ∈ O,

• AV B(o) – first day of availability of order o ∈ O in the loading port LP (o),

• FROM(o) – beginning deadline for delivery of order o ∈ O,

• TO(o) – ending deadline for delivery of order o ∈ O,

• DAY S(P1, P2, v) – number of transport days between ports P1 and P2, if the route is traveled by
vessel v ∈ V ,

• UPPER_LIMIT (k) – maximum capacity of pier k (in tonnes),

• SPEED_LOAD(k, v) – maximum speed of loading vessel v ∈ V on pier k (in tonnes per day),

• SPEED_UNLOAD(k, v) – maximum speed of unloading vessel v ∈ V on pier k (in tonnes per
day),

• WORKING_DAY (d, P ) ∈ {0, 1} – indication whether day d ∈ T is a working day (value 1) in
the port P ∈ P or not (value 0),

• MAX_CARGO(v) – maximum load capacity of the vessel v ∈ V (in tonnes),

• V ESSEL_COST_PER_DAY (v) – price per day of use of the vessel v ∈ V (in US dollars),

• STORAGE_COST_PER_TONNE(P ) – price per day of cargo storage in the port P ∈ P (in
US dollars per tonne).

Let us move on to the definition of variables:

• xdo,v,k ≥ 0 – how many tonnes of the order o ∈ O are to be loaded on the day d ∈ T at the pier
k ∈ RLP (o) on the vessel v ∈ V ,

• αd
o,v,k ∈ {0, 1} – equal to 1 if the order o ∈ O is being loaded on the day d ∈ T at the pier
k ∈ RLP (o) on the vessel v ∈ V going from source port LP (o) to the destination port UP (o), and 0
otherwise,

• ydo,v,k ≥ 0 – how many tonnes of the order o ∈ O are to be unloaded on the day d ∈ T at the pier
k ∈ RUP (o) from the vessel v ∈ V ,

• βd
o,v,k ∈ {0, 1} – equal to 1 if the order o ∈ O is being unloaded on the day d ∈ T at the pier
k ∈ RLP (o) from the vessel v ∈ V going from the source port LP (o) to the destination port UP (o),
and 0 otherwise,

• cdo,P ≥ 0 – how many tonnes of order o ∈ O are stored on the day d ∈ T at the port P ∈ P ,

• δdv,k ∈ {0, 1} – equal to 1 if the vessel v ∈ V is being during the loading process on the day d ∈ T
at the pier k, and 0 otherwise,

• εdv,k ∈ {0, 1} – equal to 1 if the vessel v ∈ V is being during the unloading process on the day
d ∈ T at the pier k, and 0 otherwise,

• γdv,P1,P2 ∈ {0, 1} – equal to 1 if the vessel v ∈ V is being during the transportation process between
ports P1 and P2 on the day d ∈ T , and 0 otherwise.

It is assumed that on non-working days a vessel is still during the loading, unloading or transportation
process, respectively. Also, the names would be repeated in the optimization process, covering a long
time period. Therefore, vessels are defined not by name or id number but by piers in source and destina-
tion ports and the date of shipment. The constraints and objective function are given in the mathematical
formulas but not necessarily in the linear form. There are two reasons for that. The first is the clarity of
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the formulation. The main goal of this article was to present a heuristic approach to find the approxima-
tion of the solution and not the usage of the classical linear optimization method. It is the second reason
for presentation in the mathematical but simplified form.

• Each order must be delivered before deadline_to.

∀o∈O cTO(o)
o,UP (o) = V OL(o) (1)

• There is a restriction for daily loading and unloading (different for each pier and vessel size).

∀d∈T ∀v∈V∀P∈P∀k∈RP

∑
o∈O

xdo,v,k ≤ SPEED_LOAD(k, v) (2)

∀d∈T ∀v∈V∀P∈P∀k∈RP

∑
o∈O

ydo,v,k ≤ SPEED_UNLOAD(k, v) (3)

• Loading and unloading takes place only on working days. The storage does not change in non-
working days.

∀d∈T ∀P∈P WORKING_DAY (d, P ) = 0 =⇒ ∀o∈O∀v∈V∀k∈RP
αd
o,v,k = xdo,v,k = 0 (4)

∀d∈T ∀P∈P WORKING_DAY (d, P ) = 0 =⇒ ∀o∈O∀v∈V∀k∈RP
βd
o,v,k = ydo,v,k = 0 (5)

∀d∈T ∀P∈P WORKING_DAY (d, P ) = 0 =⇒ ∀o∈O cdo,P = cd−1o,P (6)

• There is no need to store cargo before the day the order is available, and after that cargo storage
only changes from the previous day after loading or unloading.

∀o∈O∀d∈T ∀P∈P d ≤ AV B(o)− 1 =⇒ cdo,P = 0 (7)

∀o∈O∀d∈T ∀P∈P d ≥ AV B(o) =⇒ cdo,P = cd−1o,P −
∑
v∈V
k∈RP

xdo,v,k +
∑
v∈V
k∈RP

ydo,v,k (8)

• Vessels capacity is limited.

∀v∈V∀P∈P
∑
o∈O
d∈T
k∈RP

xdo,v,k ≤MAX_CARGO(v) (9)

∀v∈V∀P∈P
∑
o∈O
d∈T
k∈RP

ydo,v,k ≤MAX_CARGO(v) (10)

• Piers capacity is limited.

∀o∈O∀d∈T ∀v∈V∀P∈P∀k∈RP
αd
o,v,k ·MAX_CARGO(v) ≤ UPPER_LIMIT (k) (11)

∀o∈O∀d∈T ∀v∈V∀P∈P∀k∈RP
βd
o,v,k ·MAX_CARGO(v) ≤ UPPER_LIMIT (k) (12)

• There can be only one vessel loading and unloading on the pier each day.

∀d∈T ∀P∈P∀k∈RP

∑
v∈V

δdv,k ≤ 1 (13)

∀d∈T ∀P∈P∀k∈RP

∑
v∈V

εdv,k ≤ 1 (14)
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• Each order must be loaded and unloaded completely.

∀o∈O
∑
d∈T
v∈V

P∈P, k∈RP

xdo,v,k = V OL(o) (15)

∀o∈O
∑
d∈T
v∈V

P∈P, k∈RP

ydo,v,k = V OL(o) (16)

• Full order on single vessel.

∀o∈O∀d1,d2∈T ∀P1,P2∈P∀k1∈RP1
∀k2∈RP2

∀v1,v2∈V
v1 6=v2

αd1
o,v1,k1

+ αd2
o,v2,k2

≤ 1 (17)

∀o∈O∀d1,d2∈T ∀P1,P2∈P∀k1∈RP1
∀k2∈RP2

∀v1,v2∈V
v1 6=v2

βd1
o,v1,k1

+ βd2
o,v2,k2

≤ 1 (18)

• Dependencies between quantitative and binary variables.

∀o∈O∀d∈T ∀P∈P∀k∈RP
∀v∈V αd

o,v,k = 0⇔ xdo,v,k = 0 (19)

∀o∈O∀d∈T ∀P∈P∀k∈RP
∀v∈V βd

o,v,k = 0⇔ ydo,v,k = 0 (20)

• Dependencies between vessels loading, transportation and unloading.

∀v∈V∀d∈T ∀P1,P2∈P γ
d
v,P1,P2 = 1 =⇒ ∀d1∈T

d1>d
∀k∈RP1

δd1v,k = 0 (21)

∀v∈V∀d∈T ∀P1,P2∈P γ
d
v,P1,P2 = 1 =⇒ ∀d1∈T

d1<d
∀k∈RP2

εd1v,k = 0 (22)

∀v∈V∀d∈T ∀P1∈P∀k∈RP1
δdv,k = 1 =⇒ ∀d1∈T

d1≤d
∀P2∈P γ

d1
v,P1,P2 = 0 (23)

∀v∈V∀d∈T ∀P1∈P∀k∈RP1
δdv,k = 1 =⇒ ∀ d1∈T

d1≤d+DAY S(P1,P2,v)
∀P2∈P∀k2∈RP2

εd1v,k2 = 0 (24)

∀v∈V∀d∈T ∀P2∈P∀k∈RP2
εdv,k = 1 =⇒ ∀d1∈T

d1≥d
∀P1∈P γ

d1
v,P1,P2 = 0, (25)

∀v∈V∀d∈T ∀P2∈P∀k∈RP2
εdv,k = 1 =⇒ ∀ d1∈T

d1≥d−DAY S(P1,P2,v)
∀P1∈P∀k1∈RP1

δd1v,k1 = 0 (26)

• Dependencies between order and vessel loading. Non-working days between loading days are
treated as days on which the vessel is loaded.

∀v∈V∀d∈T ∀P∈P∀k∈RP
δdv,k = 1⇔

(
max
o∈O

αd
o,v,k = 1

)
∨(

max
o∈O

αd
o,v,k = 0 ∧ (27)

max
o∈O

α
max({d1∈T : d1<d ∧ WORKING_DAY (d1,P )=1})
o,v,k = 1 ∧

max
o∈O

α
min({d1∈T : d1>d ∧ WORKING_DAY (d1,P )=1})
o,v,k = 1

)
• Dependencies between order and vessel unloading. Non-working days between unloading days are
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treated as days on which the vessel is unloaded.

∀v∈V∀d∈T ∀P∈P∀k∈RP
εdv,k = 1⇔

(
max
o∈O

βd
o,v,k = 1

)
∨(

max
o∈O

βd
o,v,k = 0 ∧ (28)

max
o∈O

β
max({d1∈T : d1<d ∧ WORKING_DAY (d1,P )=1})
o,v,k = 1 ∧

max
o∈O

β
min({d1∈T : d1>d ∧ WORKING_DAY (d1,P )=1})
o,v,k = 1

)
The objective function is to minimize the overall cost, including storage and transportation costs. It

can be defined by the formula:

∑
P∈P

STORAGE_COST_PER_TONNE(P ) ·
∑
o∈O

∑
d∈T

d<FROM(o)

cdo,P

 + (29)

∑
v∈V

(
V ESSEL_COST_PER_DAY (v) ·

∑
d∈T

∑
P1,P2∈P

(
γdv,P1,P2 +

∑
k∈RP1

δdv,k +
∑

k∈RP2

εdv,k

))
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