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ON MEASURING THE SENSITIVITY
OF THE OPTIMAL PORTFOLIO ALLOCATION

In this paper we consider the sensitivity problem connected with portfolio optimization results
when different measures of risk such as portfolio rates of return standard deviation, portfolio VaR,
CVaR are minimized. Conditioning the data (represented by spectral condition index of the rates of
return correlation matrix) plays, as it is shown, a crucial role in describing the properties of the mod-
els. We report on the research conducted for 13 largest firms on Warsaw Stock Exchange.
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1. Introduction – some remarks on consequences of data matrix
conditioning on minimum portfolio variance model solution

Let R = [Rij] i = 1, …, N, j = 1, ..., T be the matrix of N time series of the rates of
return on stocks. The matrix R is then standardized – Rs is the standardized matrix of
the rates of return Rs = [Rsij].

We can represent a sample linear correlation matrix P as follows
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Let Λ = diag(λ1, λ2, ..., λN) be the diagonal matrix, with eigenvalues of P on the
main diagonal and V = [v1, ..., vN] be the matrix of normalized eigenvectors related to
λ1, λ2, ..., λN, VTV = VVT = IN (see Ralston [9] and Wilkinson, Reinsch [11] for ana-
lytical and numerical procedures).
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Then
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and j-th eigenvalue can be represented in a following way
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If any eigenvalue of P, for instance λp, equals zero it means that
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The above identity defines a precise linear relationship between rates of return se-
ries. The parameters of this relationship are the elements of an eigenvector corre-
sponding to the zero eigenvalue.

Each eigenvalue equal to zero defines one linear relationship among analyzed se-
ries. In practice, we rarely observe precise multicollinearity. Much more often we are
faced with numerical difficulties connected with ill-conditioning of data due to occur-
rence of “close to zero” eigenvalues. One of the proposed measures of the strength of
the interdependence of time series is the number of “close to zero” (or less than one)
eigenvalues of the P matrix. Condition index of the correlation matrix can be defined
as a ratio of its largest to smallest eigenvalue. It was shown in Belsley, Kuh, Welsch
[2] by simulation experiments in which progression 3, 10, 30, 100, 300, 1000... of
condition indices corresponds roughly to the progression 0.9, 0.99, 0.999, 0.9999, ...
of multiple correlation coefficients for a set of explanatory variables in linear regres-
sion model. In this work we try to look for consequences of linear interdependencies
among time series of rates of return for the optimal portfolio model solution. First
results of similar analysis helpful in optimal investment portfolio construction, where
optimality criterion is defined as variance minimization, were presented in Konarzew-
ska [7].

Portfolio variance can be presented as follows:

ΣXXT
P =2σ , (4)
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where xi, i = 1, ..., N; x = [x1, ..., xN], weight (fraction of wealth invested) of i-th secu-

rity in the portfolio, ∑
=

=
N

i
ix
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1 , 0≥ix ,

N – number of securities in the portfolio,
2
iσ – variance of i-th security rate of return,

ijσ – covariance of i-th and j-th security rates of return,
][ ijσ=Σ  – N×N covariance matrix of rates of return.

Applying singular value decomposition of covariance matrix we obtain:
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Similar decomposition of portfolio variance as in (5) can be made based on cor-

relation matrix P instead of covariance matrix Σ . From the above formula it is easy
to conclude that the identification of strong linear interdependencies ( 0~

=jλ  or
0=jλ ) is very important from the point of view of investment risk minimization.

Our opinion is that securities which have the property of forming linear relation-
ships are much desired in investment portfolio. The other consequence of the rela-
tion (5) is that portfolio variance minimization algorithm will choose portfolio
weights to set the impact of the largest eigenvalue close to zero, if possible, that is

02
1 =ω .

We present two examples of correlation matrices showing different strength of
interdependence of the data set to illustrate the portfolio variance function shape as
we change weights of portfolio components. Data in the first example were generated
as univariate random variables. Correlation matrix and optimization results are sum-
marized in Table 1. Condition index equal to the ratio of the largest to the smallest
eigenvalue of the correlation matrix is about 1.55 – so data are almost orthogonal –
minimal strength of interdependence.
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Table 1. Example 1. Correlation matrix for almost orthogonal data and optimal portfolio weights

Portfolio
component 1 2 3 Eigenvalues Eigenvectors Optimal

weights
1 1.0000 0.0671 0.0133 1.22 –0.2538 0.9498 0.1829 0.2362

2 0.0671 1.0000 0.2051 0.9922 –0.6998 –0.0498 –0.7126 0.2321

3 0.0133 0.2051 1.0000 0.7878 –0.6677 –0.3088 0.6773 0.5317

Corresponding shape of portfolio variance function presented in Figure 1 is almost
conical. The results of portfolio optimization – optimal weights are consequently
unique.

Fig. 1. Conical shape of portfolio variance – 3-components portfolio

Next example represents strong interdependence among data series. Correlation
matrix spectral decomposition and optimization results are summarized in Table 2.

Table 2. Example 2. Correlation matrix for strongly interdependent data and optimal portfolio weights

Portfolio
component 1 2 3

Component
standard
deviation

Eigen-
values Eigenvectors Optimal

weights

1 1.0000 0.9875 –0.9855 3.0277 2.9743 –0.5771 0.7636 –0.2896 0.3077

2 0.9875 1.0000 –0.9885 4.0879 0.0146 –0.5777 –0.1310 0.8057 0.2228

3 –0.9855 –0.9885 1.0000 3.9101 0.0111 0.5773 0.6322 0.5167 0.4695
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The plot in Figure 2 shows completely different conditioning of portfolio vari-
ance minimization problem. Condition index of correlation matrix generated in
Example 2 is about 268.7 which indicates strong interdependence of data series.
The resulting shape shows that although precise numerical algorithms can have no
problem to find the optimum the result is almost not unique – there are numerous
different portfolio structures with similar portfolio variance as the minimal one. For
the analyzed in Example 2 three-component portfolio the weights for all “near”
optimal portfolios lie on a straight line. The analytical formula for this line can be
approximately found applying formula (5) – we can check that minimization of
portfolio variance corresponds to such component weights that the 2

1ω  is close to
zero. It means that in this case, which represents an extremely strong linear rela-
tionship among data series, the impact of the largest eigenvalue for the portfolio
variance is extremely reduced.

Fig. 2. Tunnel shape of portfolio variance function for different weights
of 3-component portfolio – strong interdependence among series of data

We found the following expression for the fitted regression line between x1 and x2
in the bottom of the tunnel in Figure 2 using least squares estimation method:

5532.00892.1ˆ 12 +−= xx .

The determination coefficient for the above regression line was equal to 0.9922 so
the relation between weights is very strong. Portfolio variances for the weights corre-
sponding to this line are very close to each other and to the optimal solution presented
in Table 2. Thus the minimum variance portfolio model solution is in this sense,
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taking into account also that portfolio model parameters (covariances) are estimated
with statistical errors, not unique.

The problem of alternate optimal portfolio structures for minimum variance port-
folio model when data series are linearly interdependent was an inspiration to check
to what extent it was present on real stock exchange market and if it could be also
observed when another risk measure, such as CVaR, was taken into account. We
analyzed Warsaw Stock Exchange data during the period of 2003 to the end of April
2006.

2. Value-at-Risk and Conditional Value-at-Risk

Let r = [r1, r2, ..., rN] denotes a vector of portfolio components rates of return and
Rp = xTr  denotes portfolio rate of return with cumulative distribution function F(x, u)
= P{Rp ≤ u}, and (1 – α) × 100% is the chosen confidence level.

We accept the following definition of the Value-at-Risk: an α-quantile of the port-
folio rate of return distribution with changed sign (or (1 – α)-quantile of portfolio
losses), that is:

),(}),(:min{),(VaR 1 ααα xxx −−=≥∈−= FuFu R . (6)

Conditional Value-at-Risk CVaR is in this work defined as the conditional ex-
pected loss for losses greater or equal to VaR:

)],VaR)(|)([),(CVaR αα (xxxx −≤−= pp RRE . (7)

Statistical problems of VaR and consequently CVaR estimation arise when we
have difficulty in process generating rates of return identification. The reason is usu-
ally a lack of data from the left tail of portfolio rate of return distribution, non-
constant mean and/or variance, etc. In this research we applied historical simulation
for evaluating portfolio VaR. This means that we assumed that future changes in
component rates of return will look like the past ones. Another approach is to estimate
parameters of chosen time series model like GARCH(1,1) for portfolio components
and calculate appropriate forecasts of the rates of return. Other methods apply multi-
variate normality assumption, application of copulae, statistical verification of prob-
ability distribution including extreme statistics, interpolation, Monte Carlo simulation,
resampling methods. Jorion [6] gives some prescriptions for calculations. It has to be
mentioned here that VaR is not the ideal measure of investment risk – it lacks subad-
ditivity property (see Pflug [8]) for non-normal empirical distributions which are quite
often asymmetric. Moreover, it is not a convex smooth function of x so it is hard to
apply classical methods of optimization based on gradient function. In the literature
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we can find examples of data-driven optimization heuristics like threshold acceptance
algorithm applied and presented in Gilli et al. [4] where we can find also references to
other algorithms. CVaR is a measure which satisfies the properties of coherent meas-
ure of risk – see Artzner et al. [1]. As we can check in theory and practice, CVaR is
much easier to optimize – even linear programming techniques can be applied (see
Rockafellar and Uryasev [10]).

In empirical research we give report about it in §5, the chosen confidence level
was equal to 1 – α = 0.95. Optimal portfolio allocation minimizing CVaR was per-
formed with Excel Solver.

3. Measuring sensitivity of portfolio structures

Sensitivity analysis of risk measured by VaR with respect to portfolio allocation
was elaborated by Gaivoronski and Pflug [3], Gourieroux et al. [5]. Optimal portfo-
lio structure is the main result we are looking for in solving various optimization
problems. The question is how much the structures differ when we change the as-
sumptions about model parameter values (standard deviations of the rates of return,
covariances, skewness of the distribution instead of symmetry etc.). To compare
structures, we propose two measures of distance between vectors of portfolio
weights:

• Angular distance (based on sine function), equal to one for orthogonal vectors
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• Scaled Euclidean distance (notice that maximal distance equal to one is in the
case of orthogonal unit weight vectors)
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We applied these measures in empirical research to compare optimal portfolios
calculated for different approaches called:
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• Optimistic, when we assume the security was bought at the session at minimal
price and sold at maximal noticed price.

• Neutral, when we consider final prices for sessions when the security was
bought and sold.

• Pessimistic, when we assume buying at maximal and selling at minimal regis-
tered price.

Optimal allocations for two different models with non-negative weights and no re-
strictions at minimal portfolio rate of return were compared:

• Minimization of portfolio variance,
• Minimization of portfolio CVaR.
At the same time we kept control of conditioning of correlation matrices.

4. Selected results from empirical research

The empirical analysis took into account the period between January 2003–April
2006. The objects were 10-days rates of return on 13 securities – the largest firms
on the Warsaw Stock Exchange. We distinguished 7 subsamples which were ana-
lyzed separately. Table 3 summarizes data conditioning including the number of
greater than zero correlation matrix eigenvalues, maximal eigenvalues and condi-
tion indices.

Table 3. Conditioning of data

Optimistic approach Neutral approach Pessimistic approach
Time period No.

> 0
Max.

eigenvalue
Cond.
index

No.
> 0

Max.
eigevalue

Cond.
index

No.
> 0

Max.
eigenvalue

Cond.
index

2003 1st half 4 4.9474 82.40 4 4.9905 71.24 4 5.2448 72.28
2003 2nd half 2 8.7003 171.61 2 8.7405 190.36 2 8.9064 199.56
2004 1st half 3 6.3743 85.69 3 6.4504 91.88 3 6.4338 89.11
2004 2nd half 5 3.8628 45.66 4 3.7367 35.52 4 3.7450 40.88
2005 1st half 5 5.9485 66.85 4 5.9507 60.20 4 5.9695 64.70
2005 2nd half 5 3.9622 30.81 4 4.2576 32.74 5 4.4885 33.45
2006 I–IV 5 4.7090 65.38 5 5.0482 70.83 5 5.1184 65.58

As we can see the condition indices for correlation matrices for the analyzed series
were observed between 30.81 to 199.56. It means that series of rates of return ob-
served are in general interdependent for all three approaches.

The first analyzed model was the minimum variance portfolio model. The results
of sensitivity are presented in Table 4. For each sub-period we estimated correlations,
standard deviations.
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Looking at the values of distances between portfolios calculated for extremely dif-
ferent approaches in Table 4 we can see that the optimal solutions lie not far from
each other – distances are rather small as well as standard deviations. At the same
time mean rates of return differ much which is not surprising. Concluding – minimum
variance portfolios were not sensitive on even not so small changes in data matrices.
The period of time when we observed the strongest sensitivity was 1st half of 2004.
The weakest sensitivity of the results wase for the 2nd half of 2003. For both men-
tioned periods we observed strong interdependence of data series.

Table 4. Results for minimum variance optimal portfolios

Time period Approach Portfolio standard
deviation

Portfolio mean
rate of return

Angular
distance

OPT vs PES

Euclidean
distance

OPT vs PES
OPT 2.53% 2.57%

NEUTRAL 2.47% 0.81%2003
1st half

PES 2.40% –1.00%
0.2810 0.1039

OPT 5.00% 4.82%
NEUTRAL 5.13% 2.24%2003

2nd half
PES 5.23% –0.70%

0.0402 0.0298

OPT 2.88% 2.68%
NEUTRAL 2.96% 0.17%2004

1st half
PES 3.00% –2.29%

0.3388 0.1115

OPT 1.51% 3.17%
NEUTRAL 1.60% 1.22%2004

2nd half
PES 1.52% –0.80%

0.1650 0.0506

OPT 2.21% 1.85%
NEUTRAL 2.19% –0.25%2005

1st half
PES 2.23% –2.25%

0.1310 0.0556

OPT 1.80% 4.57%
NEUTRAL 1.87% 2.11%2005

2nd half
PES 1.96% –0.36%

0.2466 0.0745

OPT 2.18% 4.27%
NEUTRAL 2.27% 1.16%2006

I–IV
PES 2.13% –1.56%

0.2167 0.0734

Minimum CVaR portfolios are much more sensitive. The results are given in Ta-
ble 5. The angular distances show almost orthogonal portfolio structures obtained for
optimistic and pessimistic approach for 2nd half of 2003. Negative values of VaR and
CVaR were sometimes observed for optimistic approach. It is worth mentioning that
minimum CVaR portfolios, beside their more visible sensitivity on changes in data
series, demonstrated positive skewness in almost all cases.
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Table 6 presents distances between optimal portfolio weight vectors calculated
with the minimum variance and minimum CVaR criteria. They are quite far from each
other – for 2nd half 2003 almost orthogonal.

Table 5. Results for minimum CVaR portfolios

Time
period Approach VaR CVaR rr Std Skewness Angular

distance
Euclidean
distance

OPT 0.1791% 0.2975% 4.37% 3.36% 0.4228
NEUTRAL 1.5663% 2.3326% 2.75% 3.37% 0.51052003

1st half
PES 3.7184% 4.4651% 0.64% 3.17% 0.4767

0.3531 0.1478

OPT 2.8904% 3.7336% 7.96% 7.74% 1.0128
NEUTRAL 5.5590% 6.7531% 4.32% 6.74% 0.36902003

2nd half
PES 9.3567% 10.7497% –1.08% 5.47% 0.0684

0.9737 0.5541

OPT 1.4913% 1.7941% 5.14% 4.68% 0.7845
NEUTRAL 4.4824% 4.9826% 2.63% 4.95% 0.74552004

1st half
PES 6.6717% 7.5803% –0.67% 4.01% 0.3950

0.2768 0.0975

OPT –0.9307% –0.7460% 3.31% 1.54% 0.5084
NEUTRAL 1.1210% 1.3903% 1.49% 1.72% 0.32372004

2nd half
PES 3.3679% 3.5960% –0.54% 1.68% 0.3690

0.4990 0.2147

OPT 0.9301% 1.1250% 2.84% 3.01% 0.5646
NEUTRAL 3.1406% 3.7725% 0.55% 2.83% 0.48242005

1st half
PES 5.6767% 5.8544% –1.85% 2.82% 0.4067

0.5994 0.2084

OPT –1.6819% –0.8287% 5.42% 2.44% 0.1924
NEUTRAL 1.3775% 1.8099% 2.49% 2.25% -0.10772005

2nd half
PES 4.5375% 4.8344% 0.11% 2.33% -0.5029

0.6981 0.3131

OPT –2.4879% –1.9588% 7.66% 3.62% 0.2788
NEUTRAL 1.1433% 1.5665% 3.23% 2.99% 0.54192006

I–IV
PES 3.6853% 4.1488% –0.56% 2.56% 0.4894

0.3287 0.1379

To give a deeper insight into the problem of the impact of data ill-conditioning on
portfolio optimization with different criteria, we have chosen two sample periods and
neutral rates of return for only three series and composed optimal portfolios. Values
of statistical characteristics were calculated changing contribution of assets from 0 to
1 with 0.05 step. The first period was 2nd half 2003 – the highest interdependence
observed. For selected data condition index was equal to 21.54 with maximal eigen-
value equal to 2.414 (for three components portfolio sum of eigenvalues is equal to
three). Figures 3–6 present the following relations:

Fig. 3 mean portfolio rate of return vs portfolio standard deviation,
Fig. 4 mean portfolio rate of return vs portfolio VaR,
Fig. 5 mean portfolio rate of return vs portfolio CVaR,
Fig. 6 portfolio CVaR vs portfolio standard deviation.
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Table 6. Distances between minimum variance and minimum CVaR portfolios

Time period Approach Angular
distance

Euclidean
distance

OPT 0.8644 0.3691
NEUTRAL 0.8010 0.35572003

1st half
PES 0.7563 0.3286
OPT 0.9992 0.6767

NEUTRAL 0.9834 0.62182003
2nd half

PES 0.3216 0.1925
OPT 0.9762 0.4203

NEUTRAL 0.9850 0.45372004
1st half

PES 0.9192 0.3702
OPT 0.2525 0.0789

NEUTRAL 0.4141 0.13862004
2nd half

PES 0.5501 0.1795
OPT 0.7472 0.3003

NEUTRAL 0.6309 0.26222005
1st half

PES 0.5490 0.2241
OPT 0.7494 0.2824

NEUTRAL 0.5518 0.19862005
2nd half

PES 0.6823 0.2166
OPT 0.7005 0.2958

NEUTRAL 0.6822 0.26422006 I–IV
PES 0.5162 0.1935
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1.0%

1.5%

2.0%

2.5%

6.0% 6.5% 7.0% 7.5% 8.0% 8.5% 9.0%
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rr

Fig. 3. Mean portfolio rate of return vs. portfolio standard deviation
– 3-component portfolios for 2nd half 2003
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Fig. 4. Mean portfolio rate of return vs portfolio VaR – 3-component portfolios for 2nd half 2003
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Fig. 5. Mean portfolio rate of return vs portfolio CVaR – 3-component portfolios for 2nd half 2003
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Fig. 6. Portfolio CVaR vs portfolio standard deviation – 3-component portfolios for 2nd half 2003
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Trying to comment on the results on Figure 3 we have to notice that for ill-
conditioned data minimization of portfolio variance, quadratic programming problem,
meets many different solutions with similar values of the objective function. Trying to
find portfolio minimizing VaR, as it can be noticed on Figure 4, one is faced with
numerical problems. We cannot find something similar to the efficient frontier – non-
dominated portfolios as in the former case. Unique portfolio minimizing VaR at the
graph is at the same time maximizing mean rate of return. Figure 5 illustrates linear
steep shape of the efficient frontier when we minimize CVaR with constraint on
minimal satisfying value of mean rate of return. Although there exists further possi-
bility of increasing rate of return from 1.90% to about 1.95% it involves considerable
increase of CVaR from 12.84% to 14.99%. Figure 6 relates portfolio CVaR to portfo-
lio standard deviation. We can observe that minimal values of both risk measures
focus in a small region. The structures of the two optimal portfolios: first minimizing
CVaR and second minimizing variance, and distances between them are as follows:

]4942.05058.00[CVaR =x ,

]3902.04067.02031.0[variance =x ,

.1759.0

,3392.0

=

=

E

A

d

d

As we can observe optimal portfolios are quite neighbouring. Figure 6 illustrates,
however, that there does not exist a relationship between this two measures – the
same value of standard deviation is observed for portfolios with very distant values of
CVaR and vice versa.

Fig. 7. Portfolio VaR for 2nd half 2003 – example of 3-component portfolio
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Figures 7 and 8 illustrate portfolio VaR and CVaR surface for different alloca-
tions. In the case of VaR we can observe non convex, multimodal shape. Surface
drawn by CVaR is smooth, easy to look for optimal allocation. However, the bottom
of the surface is flat which suggests the possibility of different structures with similar
small CVaR characteristics.

Fig. 8. Portfolio CVaR for 2nd half 2003 – example of 3-component portfolio

-0.5%
-0.4%
-0.3%
-0.2%
-0.1%
0.0%
0.1%
0.2%
0.3%
0.4%
0.5%
0.6%
0.7%
0.8%
0.9%
1.0%

2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 5.5% 6.0%

std

rr

Fig. 9. Portfolio mean rates of return vs standard deviation – 3-component portfolio for 2nd half 2004

Second chosen period was 2nd half 2004. Figures 9–12 correspond to Figures
3–6 for the former example. Conditioning of 3-component portfolio data matrix is
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much better – condition index was equal to 1.67 with maximal eigenvalue equal
to 1.26.

-0.6%

-0.4%

-0.2%

0.0%
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0.8%

1.0%
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4.0% 5.0% 6.0% 7.0% 8.0% 9.0% 10.0% 11.0%

VaR

rr

Fig. 10. Portfolio mean rates of return vs. VaR – 3-component portfolio
for 2nd half 2004
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Fig. 11. Portfolio mean rate of return vs. CVaR – 3-component portfolio
for 2nd half 2004
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Fig. 12 Portfolio CVaR vs standard deviation – 3-component portfolio for 2nd half 2004

We can easily see the differences between the relations illustrated on correspond-
ing graphs for the two chosen periods:

• we do not observe grouping of portfolios near minimal value of standard devia-
tion in Figure 9 comparing it with Figure 3,

• VaR for portfolios presents much smoother behaviour than in the former exam-
ple,

• the shape of the efficient frontier for minimization of CVaR problem in Fig-
ure 11 does not allow increasing the mean rate of return without significant increase
in CVaR as presented in Figure 5,

• we observe in Figure 12 almost linear relationship between portfolio CVaR  and
standard deviation; no functional relation in Figure 6.

The optimal structures of portfolios and distances were as follows:

]5115.03948.00936.0[CVaR =x ,

]3539.04461.02000.0[variance =x ,

.1397.0

,3002.0

=

=

E

A

d

d

Comparing the distances between the two structures for nearly orthogonal data
with corresponding results for strongly interdependent series of observations we can
see only a slight difference – for nearly independent series the distances are a little bit
smaller.
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Figure 13 presents VaR surface for portfolios – although it is also rough as for
former example it shows very different shape – not so many local minima exist and
they represent quite similar values of VaR – different portfolio allocations but fo-
cused in close region.

Fig. 13. Portfolio VaR for 2nd half 2004 – example of 3-component portfolio

Fig. 14. Portfolio CVaR for 2nd half 2004 – example of 3-component portfolio
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The surface of CVaR presented in Figure 14 for this well-conditioned  set of data
is not so flat – minimum is for sure unique, easy to find.

5. Conclusions

Analyzing data from the Warsaw Stock Exchange we have checked that strong
interdependence among series of rates of return on the real stock exchange market is
present. The aim of the work was to illustrate how strongly it influences the sensitiv-
ity of optimal portfolio structure when two different measures of risk were taken into
account – portfolio variance and CVaR. The result for minimum variance model is
obvious – quadratic programming problem becomes ill-conditioned and there is
a problem of alternate optima which can be located far from each other looking at the
optimal portfolio structure. Minimizing CVaR when the data are interdependent we
can also identify many distant structures with similar values of minimal risk although
global minimum exists. Strong interdependence among series of the rates of return
enlarges problem of identifying portfolio structure minimizing VaR – the surface
which is always rough with many local extrema becomes much more difficult to ana-
lyze with heuristic search methods.

The work gives only first insight into the problem of sensitivity of the optimal
portfolio allocation for small changes in data. The next step will need improvements
in VaR and CVaR estimation with the help of Monte Carlo simulation preserving
covariances and empirical distributions. We plan to check how far optimal allocations
are sensitive on wrong identification of data generating process.
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O pomiarze wrażliwości optymalnych struktur portfeli akcji

W artykule podjęto rozważania na temat wrażliwości rozwiązań problemu optymalizacji portfeli ak-
cji, gdy brane są pod uwagę różne miary ryzyka: odchylenie standardowe stóp zwrotu, VaR portfela,
CVaR portfela. Uwarunkowanie danych, mierzone za pomocą stopnia uwarunkowania macierzy korelacji
stóp zwrotu z akcji, odgrywa, jak pokazano, zasadniczą rolę dla własności rozwiązań modelu minimaliza-
cji wariancji portfela. Model, który jest modelem programowania kwadratowego, jest źle uwarunkowany
i pojawia się problem niejednoznaczności rozwiązania optymalnego – wielu strukturom portfeli, nawet
bardzo odległym, odpowiada podobna, bliska minimalnej wartości wariancji. Minimalizując CvaR
w warunkach współzależności, napotykamy na podobny problem, choć nie występuje on z taką samą siłą.
Silna współzależność szeregów stóp zwrotu zwiększa również problemy minimalizacji VaR – nasila się
problem występowania wielu lokalnych ekstremów, co powoduje znaczne trudności w stosowaniu metod
heurystycznych.

Przeprowadzono badanie empiryczne, biorące pod uwagę 13 największych spółek na GPW w War-
szawie. Stwierdzono silną współzależność stóp zwrotu. Zbadano siłę wrażliwości rozwiązań modeli
minimalizujących wariancję i CVaR z wykorzystaniem miary odległości kątowej oraz skalowanej odle-
głości euklidesowej. W efekcie badań stwierdzono, że portfele znalezione przy kryterium minimalizacji
wariancji nie wykazały dużej wrażliwości na zmiany w macierzy danych. Portfele minimalizujące CVaR
okazały się bardziej wrażliwe.

Słowa kluczowe: optymalizacja portfela akcji, wartość zagrożona ryzykiem VaR, warunkowa wartość
zagrożona ryzykiem CVaR


