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SENSITIVITY ANALYSIS IN SEQUENCING PROBLEMS

In this paper, three particular sequencing problems are considered. It is shown how to perform
the sensitivity analysis for each of these problems. The sensitivity analysis consists in checking how
the values of given parameters can vary so that the obtained optimal sequence of jobs remains opti-
mal.

1. Introduction

Scheduling has been a topic of great interest since the very beginning of operation-
al research. Over the last fifty years a lot of scheduling models have been developed
and a lot of them have found applications in the industry and the scentific research.
Sequencing problem is a special case of the more general scheduling problem, in
which each schedule can be represented by a sequence of jobs. In a sequencing prob-
lem a decision maker is going to find a feasible sequence of jobs for which the value
of a given cost function is minimal. A wide review of the sequencing problems togeth-
er with some complexity results can be found in [2]. In a typical sequencing problem
there are given some parameters, the values of which must be fixed before the calcula-
tion of an optimal sequence. The set of the parameters almost always includes pro-
cessing times given for all jobs. Due dates and weights are also typical parameters,
often used in sequencing models. After calculation of an optimal sequence it may be
important and interesting to check the stability of the obtained solution. In other
words, a decision maker may want to check how the values of chosen parameters can
vary so that the optimal sequence remains optimal. Such an analysis is called the sen-
sitivity analysis and it has already been applied to many mathematical models (for
example to linear programming). Some results on the sensitivity analysis in combina-
torial optimization, together with a wide literature review can be found in [9].
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In order to find a good method of performing the sensitivity analysis, each particu-
lar sequencing problem should be studied separately. In this paper, three well-known
sequencing problems are explored. The first two are the single machine sequencing
problems denoted in Graham’s notation by 1|precimaxwiL; and 1|outtree|ZwiCi. The
third problem is the two machine permutation flow shop problem denoted by F2
|ICmax. For all of the three considered problems polynomial algorithms have been de-
veloped (see [1], [7], [8]). In this paper, some additional results on each of the prob-
lems are presented. In particular, for each problem some sufficient and necessary con-
ditions of optimality are recalled. The sufficient and necessary conditions of
optimality are then applied to the sensitivity analysis.

2. Formulation of the problem

Sequencing problem is a special case of the more general single machine schedul-
ing problem defined, for example, in [2]. Let us start with recalling the general formu-
lation of the sequencing problem. Let J = {1, 2, ..., n} be a set of jobs ready for pro-
cessing at time 0. It is assumed that preemption of jobs is not allowed, i.e., the
processing of each job cannot be interrupted. The set J may be partially ordered by
some precedence constraints — between jobs. The set of all the precedence constraints
is denoted by prec and it can be represented by an acyclic and directed graph without
transitive arcs (see [2]). We assume that each solution is represented by
a sequence (permutation) of jobs 7= (z(1), ..., z(n)), =(i) € J, i=1, ..., n. A given
sequence r is feasible if it preserves all the precedence constraints between jobs, i.e.,
if i —> j then job i must appear in 7z before job j. We will denote by IT the set of all the
feasible sequences. Let @ be a set of all parameters given in the problem. The set @ can
include processing times, due dates, weights etc., given for all jobs. There is also given
a cost function F : IT — R. The value of F(z) denotes the cost of the sequence 7 for the
fixed parameters. For the fixed parameters the sequencing problem consists in calculat-
ing a feasible sequence 7 for which the value of the cost function is minimal.

Assume that 7 is a given optimal sequence and P = {a1, ..., a} < @, 1 > 1, is
a given subset of parameters. Let us assume that all the parameters in the set @\P are
fixed and all the parameters in the set P are variables. Let V(P; 7z) be the set of all vec-
tors (au, ..., au) € IR, for which the sequence 7 is optimal. If |P| = 1, then we get an
important special case in which V(P; z) < R. In this case we obtain the sensitivity
range for a chosen single parameter. If |P| > 1 then V(P; ) should be characterized by
some relations between the parameters in the set P. In the next three sections we will
show how to perform the sensitivity analysis for three well known sequencing prob-
lems.
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3. The problem 1|prec|max wiLi

In the problem under consideration the set of the parameters includes: nonnegative
processing times p;, honnegative due dates d; and positive weights w; given for each
jobield. Thus @ = {ps, ..., pn, 01, ..., dn, W1, ..., Wn}. Let us denote by Ci(x) the
completion time of the ith job in a given sequence z, i.e., if i = z(k) then Ci(n) =
Z‘szl P.(j) - The lateness Li(7) of job i in the sequence 7 is equal to Ci(z) — di. Finally,

the cost function F(7) is defined as follows:

F(7)=max w;L; (7).

thus the objective is to find a feasible sequence in which the maximal weighted late-
ness is minimal. The problem can be solved in O(n?) time by means of Lawler’s algo-
rithm [8]. Consider now a feasible sequence z. A job k € J is called critical in = if it
has the greatest weighted lateness in 7, i.e.,

w Ly (7) = max w, Li(7) . ()

Note, that there may appear more than one critical job in . Let us denote by Si(#),
i € J, the set containing all the jobs processed before job i in 7, which can be moved
just after i without violating the precedence constraints. For example, consider the set
of jobs J = {1, ..., 6} with precedence constraints prec={2 > 4,2 > 1,1 — 3,3 — 6}.
Let 7= (2, 4, 1, 3, 5, 6) be a feasible sequence. We obtain Ss(z) = {3, 4} since only
jobs 3 and 4 can be moved just after job 5 in z without violating the precedence
constraints. Job 2 cannot be moved just after job 5 because the sequence (4, 1, 3,
5, 2, 6) is infeasible and similarly job 1 cannot be moved just after job 5 since the
sequence (2, 4, 3, 5, 1, 6) is infeasible. The following theorem gives a sufficient
and necessary condition of optimality of a given sequence in the considered prob-
lem [4]:

Theorem 1. Let 7 be a feasible sequence. Then zis optimal if and only if there ex-
ists in 7 a critical job k € J for which the following condition holds:

Vies, (Wi (C (7) = dy) <w; (Cy (7) - d;) . ()

Let k € J be a job in a given feasible sequence 7 Consider the following system
Yi(7):
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W, (Cy —dy)<w;(Cy —d;) forall jeS,(n).

In the first row of Yi(z) we calculate the completion times of all the jobs in 7. In
the second row we ensure that the given job k € J is critical in 7 (i.e., it has the great-
est weighted lateness in 7). Finally, in the last row we check condition (2) for job k
(see Theorem 1). It is a direct consequence of Theorem 1 that the sequence x is opti-
mal if and only if at least one of the systems Yi(7z), k € J, is uncontradictory (i.e., all
conditions in Yi(7) are fulfilled). Now, we use this fact to show how to carry out the
sensitivity analysis in the considered problem. Let P = {e, ..., a1} < @ be a given
subset of parameters. Let us define the set Vi(P; 7z), k € J, which consists of all the
vectors of parameters (e, ..., ai) € IR' for which the system Yi(7) is uncontradictory.
We obtain the characterization of the set V«(P; 7z) by simply fixing the values of the
parameters from the set @\P in (3) and by simplifying the resulting system. If P consists
of only one parameter, then Vi(P; x) is an interval in IR. If |P| > 1 then V«(P; 7) is de-
scribed by some simple relations between the parameters in the set P. Let us define:

V(P )= V(P 7). 4)

kel

The set V(P; z) consists of all the vectors of parameters (e, ..., ai) for which the
sequence 7 is optimal, under the assumption that all the other parameters (i.e., parame-
ters from the set @\P) are fixed. In order to prove this fact assume that (e, ..., &) €
V(P; z). From (4) we obtain that there exists k € J such that (aa, ..., &) € Vk(P; 7),
which means that the system Y(7) is uncontradictory for (e, ..., ai). From the suffi-
cient condition in Theorem 1 we obtain that x is optimal in this case. On the other
hand, assume that 7 is optimal for (e, ..., &) € R'. From the necessary condition in
Theorem 1 we obtain that there must exist k € J for which the system Yi(7) is uncon-
tradictory for (e, ..., ai). This means that (o, ..., a1) € Vi(P; #) and by (4) it holds
(v, ..., au) € V(P; 7). If the set P consists of only one parameter, then V(P; 7) is
a sum of at most n intervals and it can be easily calculated in polynomial time. If |P| > 1
then the description of V(P; 7z) may be more complicated.

Example 1. Let J= {1, ..., 6}, prec = {3 — 4, 2 — 6}, with all the parameters p;,
di, w;, i € J, being given in Table 1.

We carry out the sensitivity analysis for 7= (1, 2, 3, 4, 5, 6). First, we perform the
sensitivity analysis for the single parameter ps, i.e., we are going to calculate the set
V({ps}; 7). From (4) it follows that we have to calculate all the sets Vi({ps}; 7), k € J.
As an example we show how to obtain Vs({ps}; 7). From the definition of V(P; 7z) it
follows that the set Vs({ps}; 7) consists of all the values of ps, which fulfill the system
Ys(7z), assuming that all the other parameters are fixed (their values are taken from
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Table 1). So, we fix all the parameters apart from psz in Ys(x) (see (3)). We get C, = 8,
C,=12,C3=12 + p3, C4 = 14 + p3, Cs = 19 + p3, Cs = 21 + p3. We also have Ss(7) =
{1, 2, 4}. From (3) we obtain:

0.3(19+ p, —6) >1.1(8—5),
0.3(19+ p, —6) >1(12-10),

0.319+ p, — 6) >1.4(12+ p, —13),

0.3(19+ p, —6) > 0.7(14 + p, —15),

Ys(7) = )
0.3(19+ p, —6) > 0.2(21+ p, —12),

0.3(19+ ps —6) <1.1(19+ p, —5),

0.3(19+ p, —6) <1(19+ p, —10),

0.3(19+ p, —6) <0.7(19 + p, —15).

Table 1

Parameters of the sample problem
iel pi di Wi
1 8 5 1.1

2 4 10 1
3 3 13 1.4
4 2 15 0.7
5 5 6 0.3
6 2 12 0.2

Solving (5) we obtain ps € [2.75, 4.82], so Vs({ps}; 7)) = [2.75, 4.82]. In the same
way we obtain that Vs({ps}; =) = [4.82, 8.5] and Vik({ps}; n) = & for k € {1, 2, 4, 6}.
Finally, V({ps}; 7) = Va({ps}; 7n) w Vs({ps}; 7) = [2.75, 8.5]. It means that z remains
optimal if and only if pz belongs to the interval [2.75, 8.5].

In the same way it is possible to perform the sensitivity analysis for more than one
parameter, for example, for ps and ws. We obtain:

Vi({ ps, Ws}; m) = I,

Va({ ps, ws}; 7) = &,

Va({ ps, Ws}; 7) = {(p3s, W3): p3=>0,w3>0,4.8 <ws(ps—1) <5}, (6)

V4({ Ps, W3}1 ﬂ) = @1

Vs({ p3, Ws}; 7) = {( ps, W3): ps>2.75, w3 >0, ws (ps — 1) < 3.9 + 0.3ps},

Ve({ ps, ws}; 7) = .

From (4) and (6) we get
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V({ ps, wa}; 7) = Vs({ ps, wa}s ) U Vs({ ps, Wa}s 7).

In this case, the set V({ ps, Ws}; 7) = IR? is described by some relations between
parameters pz and ws.

4. The problem 1|outtree|2w;C;

The set of parameters in this problem includes: nonnegative processing times p;
and positives weights w; given for each job i € J, s0 @ = {p1, ..., pn, W1, ..., Wn}. We
assume that the precedence constraints in the problem are of the outtree type. This
means that each job in the graph of the precedence constraints has at most one direct
predecessor (see, for example, Fig. 1). This assumption is necessary since the more gen-
eral problem, in which the precedence constraints are unrestricted, is strongly NP-hard
even if wi = 1, i € J (see [2]). Let us denote by Ci(z) the completion time of the
i-th job in a given sequence z. The cost function takes the following form:

F(x) ZZ w,C;i (7)),

ied

thus the objective is to minimize the weighted sum of completion times. The problem
can be solved in O(n?) time (see [1]). Let us now present some additional results on
the problem considered. These results are presented in detail in [3]. Consider a feasible
sequence 7. Any subsequence of jobs in s called a block. For example, if 7= (2, 3,
1, 4,5) then (2, 3, 1), (1, 4) and (5) are blocks in 7. We say that a block o= (o(1), ...,
o(u)) is simple if it consists of only one job or o(1) must precede all the jobs &(2), ...,
o(u) (in other words, if there is a path from job o(1) to each job &(2), ..., o(u) in the
graph of the precedence constraints). Assume that oiand o are two different blocks
in a feasible sequence 7. We say that o1 ~ o if and only if the following conditions
hold:

1. Block o is processed just after block o1 in 7, so 7= ( p1, o1, o2, p2), Where pr
and p, are blocks or empty sequences.

2. Blocks o1 and o can be exchanged without violating the precedence con-
straints, i.e., the sequence 7’ = ( p1, o2, o1, p2) is feasible.

The following theorem holds [3]:

Theorem 2. Assume that r is a feasible sequence. Then = is optimal if and only if
for all simple blocks o1and o in 7 such that o1 ~ o holds:
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Ziealpi <2i60'2 pi
oW S oW

icoy i ieo, i

(7)

Let SB(x) denote the set of all pairs of simple blocks (o1, 2) in zsuch that o1 ~ .
The set SB(#) contains at most O(n?) elements and in [3] a polynomial algorithm for
calculating the set SB(7) is presented. Having the set SB(z) we can construct the sys-
tem of |[SB(#)| inequalities of the form (7). By Theorem 2 the sequence x is optimal if
and only if all the inequalities in the resulting system are fulfilled. Taking advantage
of this fact we show how to perform the sensitivity analysis for a given sequence 7. As-
sume that P = {e, ..., au} < @ is a given subset of parameters. We obtain the charac-
terization of the set V(P; z) by fixing the values of all the parameters from @\P in (7).
If |P| = 1 then V(P; 7z) is an interval in R. If |P] > 1 then V(P; 7) is described by some
simple relations between parameters in P.

oo
O
olRC

Fig. 1. Graph of the precedence constraints in the sample problem

Table 2
Parameters of the sample problem
iel pi Wi
1 9 2
2 18 3
3 8 3
4 7 4
5 14 1
6 12 2
7 18 3
8 9 4

Example 2. Consider a problem in which J = {1, 2, ..., 8}, with all the parameters
pi and wi, i € J being given in Table 2. The graph of the precedence constraints is giv-
en in Figure 1. We carry out the sensitivity analysis for the optimal sequence = =
(1,4,3,8,7,6,2,5).
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First we calculate the set SB(7):

SB(m) = {((4), (3)), (4). (3.8)), ((4). (3.8,7)), ((4), (3,8,7,6)), ((3.8,7.6), (2)),
((3,8,7,6), (2,5)), ((8). (7)), (7). (6)). ((6). (2)) ((6), (2.5))} -

Let us show, for example, why ((3,8,7,6), (2,5)) € SB(x). It is easy to see that
(3,8,7,6) and (2,5) are two neighbour blocks in 7, which can be exchanged without
violating the precedence constraints (since jobs 2 and 5 have no predecessors in the set
{3,8,7,6}). Block (2,5) is simple since 2 must precede job 5 and block (3,8,7,6) is sim-
ple since job 3 must precede jobs 8, 7 and 6 (see Fig. 1).

Having the set SB(z) we construct inequalities (7) for the problem under consid-
eration:

WaPs < Wap3

(W3 + Wg)pa < Wa( 3+ Ps)

(W3 + W+ W7)pa < Wa( Ps+ pg+ pr)

(W3 + Wg + W7 + We)Pa < Wa( P3+ Pg+ P7+ Pe)

Wa( p3 + Ps + p7 + Pe) < (W3 + Wg + W7 + We) P2

(W2 + Ws)( 3 + pg + P7 + Ps) < (W3 + Wg + W7 + We)( P2+ Ps) 8
W7Pg < Wgp7

WsP7 < W7Ps

W2Ps < WeP2

(W2 + Ws)pe < Ws( P2 + Ps)

It follows from Theorem 2 that =z is optimal if and only if the parameters of the
problem fulfil the system (8). Assume that we want to perform the sensitivity analysis
for ws and ps. We start with fixing all the parameters apart from ps and ws in (8). We
obtain:

Tws < 4ps

7(ws+4)<4(pz+9)

T(ws +7) <4(ps+27)

7(w3 +9) <4(ps +39) 9)
3(ps+39) <18(ws +9)

8(ps+39) <32(ws+9)
Simplifying the system (9) we obtain:
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1 3 4
V ({ps, W}, ﬂ)z{(p3,w3):z Ps +ZSW3 =37 P3: P3 20}- (10)

Setting p3 = 8 in (10) we obtain V ({w,}; 7) :{2%, 4;} Similarly, setting wz = 3

in (10) we get V({p3};7z)={5%,9] This means that the sensitivity range for ws

equals [2% 4;} and the sensitivity range for p; equals {5% 9}.

5. The problem F2 ||Crax

In this section, we consider the two machine flow shop sequencing problem denot-
ed by F2||Cmax in Graham’s notation. The set of jobs J = {1, ..., n} must be processed
on two machines M; and M.. Each job i € J is processes first on the machine M; and
then on the machine M,. The order of processing is the same on both machines and it
can be represented by a sequence of jobs =z For each job i e J there are given
nonnegative processing times a; and b, respectively, on machines M; and M, thus
@={ay, ..., an, b1, ..., bo}. It is assumed that there are no precedence constraints be-
tween jobs, so each sequence of jobs is feasible. The objective is to calculate a se-
quence 7 for which the completion time of the last job is minimal. The problem con-
sidered can be solved in O(n log n) time by famous Johnson’s algorithm [7]. For each
sequence it is possible to construct the activity network presented in Figure 2. It is
easy to observe that the completion time T(#) of the last job in 7 (i.e., the job 7z (n)) is
equal to the length of the longest path from the vertex a,i to the vertex bun. The
number of paths from a.) to b equals n. Thus, T(xz) can be calculated as follows:

k n
T(z)= rpgjx[g a,g) + ;bﬁ(i)] . (11)

A1) —» Ay —» e — Ay
D) — D) — e N ¢ N

Fig. 2. The activity network for sequence =
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Ajob z(r) € J,r=1, ..., n,is called critical in a given sequence r if the following
condition holds:

T(r)= z At an(i) - (12)

Thus, job 7z(r) is critical if and only if a1 — ... & @xr)— Dy — ... = D) is the
longest path in the activity network for 7. Note that there may appear more than one
critical job in 7. The following theorem holds [6]:

Theorem 3. Sequence x is optimal if and only if there exists in 7 a critical job
z(r)such thatforalli € {1, ..., r}and for all j € {r, ..., n} holds:

min{a, g, b, <min{a,;, b} (13)

Now, we show how to apply Theorem 3 to the sensitivity analysis. Let 7z be a given
sequence of jobs let r € {1, ..., n}. Consider the following system of inequalities £2,(7):

rla (i
min{a,q, b, <min{a, ), b, } foriefl ... r}, je{r, .., n}

n j

I=r

)+an ) fOI‘j=1,...,n,

7 (i i=j~x(i

Q(7) 2{ (14)

The system 2(x) consists of n + r(n — r + 1) inequalities. In the first row of Q.(7z)
we check whether the job occupying the rth position in 7 is critical. In the second row of
(7)) we check conditions (13) from Theorem 3. It is clear that the sequence r is op-
timal if and only if at least one of the systems ©.(xz), r =1, ..., n, is uncontradictory.
Now, we can perform the similar analysis as in Section 2. For a given subset of pa-
rameters P = {c, ..., a} < @ we define the set V((P; x), r = 1, ..., n, which consists
of all the vectors of parameters (a, ...,a1) for which the system .(x) is uncontradic-
tory (assuming that all the parameters from the set @\P are fixed). Finally, the set V(P;
71) can be calculated as follows:

V(P;ﬂ):LnJVr(P;ﬂ). (15)

Using the same argumentation as in Section 3 we can prove that the set V(P; x) con-
sists of all the vectors of parameters (e, ..., ai) for which the sequence 7 is optimal.

Example 3. Consider a problem in which J = {1, 2, ..., 6} and all the parameters a;
and b;, i € Jare given in Table 3.
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Table 3
Parameters of the sample problem
iel ai bi
1 3 6
2 7 4
3 4 7
4 5 3
5 7 3
6 2 2

We perform the sensitivity analysis for the optimal sequence 7= (1, 2, 3, 4, 5, 6)
and for the parameters asz and bs, so we want to characterize the set V({as, bs}; 7).
First, we calculate all the sets V(({as, bs}; 7), r =1, ..., n (see (15)) by fixing all pa-
rameters apart from as an bs in Q.(xz). After simplification we get V.({as, bs}; 7) = &
forr e {1, 2, 3,4, 6} and

V:({as, by}; ) ={(a;, by) : by €[0,9]a; 20, b, -5<a, <b}u

(16)
{(a;,b,) b, €[3,9]a, >0, b, ~5< a.}.

From (15) it follows that V({as, bs}; 7) = Vs({as, bs}; 7) and V({as, bs}; z) consists
of all the vectors (as, bs) for which = is optimal. Setting az = 4 in (16) we obtain
V({bs}; 7)) =[3, 9] and setting bz = 7 in (16) we get V({as}; 7) = [2, «).

6. Conclusions

In this paper, it is shown how to perform the sensitivity analysis for three partic-
ular sequencing problems. For all of the considered problems it is possible to give a
full characterization of the set V(P; 7). In particular, it is easy to calculate the sensi-
tivity range for each, single parameter. Sensitivity analysis is very important from
the practical point of view. The assumption that all the parameters are known in
advance is not valid for most of the real-world processes and it restricts the practical
aspect of sequencing. Sensitivity analysis is one of the several possibilities of taking
the precision into account. The obtained results may also be used as a background to
investigate stochastic or fuzzy sequencing problems (see [5]). The work in the field
of sensitivity analysis should be continued. The sensitivity analysis requires a par-
ticular problem to by analyzed more deeply. A good starting points is to formulate
some sufficient and necessary conditions of optimality of a given sequence. This is
the case for all the sequencing problems studied in this paper (see Theorems 1, 2
and 3).
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Analiza wrazliwo$ci w problemach kolejnosciowych

Problem kolejnosciowy jest specjalnym przypadkiem ogélniejszego problemu szeregowania. W pro-
blemie kolejnosciowym celem podejmujacego decyzje jest wyznaczenie dopuszczalnej kolejnosci (per-
mutacji) prac, dla ktorej wartos¢ zadanej funkcji kosztu jest najmniejsza. W typowym problemie kolejno-
Sciowym zadane s3 pewne parametry (np. czas trwania prac), ktérych wartosci muszg by¢ ustalone przed
wyznaczeniem optymalnego rozwigzania. Po wyznaczeniu optymalnej kolejnosci prac istotne moze by¢
pytanie o stabilno$¢ otrzymanego rozwigzania. Mozna zapyta¢, w jakim zakresie mogg si¢ zmienia¢
warto$ci parametrow problemu, aby otrzymane rozwigzanie pozostalo optymalne? Taka analiza nazywa-
na jest analiza wrazliwoséci. Aby otrzymac¢ efektywna metod¢ przeprowadzenia analizy wrazliwosci,
kazdy szczegblny przypadek problemu kolejnosciowego nalezy bada¢ osobno. W artykule przedstawiono
efektywne metody przeprowadzenia analizy wrazliwo$ci dla trzech wybranych probleméw kolejnoscio-
wych.



