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SENSITIVITY ANALYSIS IN SEQUENCING PROBLEMS 

In this paper, three particular sequencing problems are considered. It is shown how to perform 

the sensitivity analysis for each of these problems. The sensitivity analysis consists in checking how 

the values of given parameters can vary so that the obtained optimal sequence of jobs remains opti-

mal. 

1. Introduction 

Scheduling has been a topic of great interest since the very beginning of operation-

al research. Over the last fifty years a lot of scheduling models have been developed 

and a lot of them have found applications in the industry and the scentific research. 

Sequencing problem is a special case of the more general scheduling problem, in 

which each schedule can be represented by a sequence of jobs. In a sequencing prob-

lem a decision maker is going to find a feasible sequence of jobs for which the value 

of a given cost function is minimal. A wide review of the sequencing problems togeth-

er with some complexity results can be found in [2]. In a typical sequencing problem 

there are given some parameters, the values of which must be fixed before the calcula-

tion of an optimal sequence. The set of the parameters almost always includes pro-

cessing times given for all jobs. Due dates and weights are also typical parameters, 

often used in sequencing models. After calculation of an optimal sequence it may be 

important and interesting to check the stability of the obtained solution. In other 

words, a decision maker may want to check how the values of chosen parameters can 

vary so that the optimal sequence remains optimal. Such an analysis is called the sen-

sitivity analysis and it has already been applied to many mathematical models (for 

example to linear programming). Some results on the sensitivity analysis in combina-

torial optimization, together with a wide literature review can be found in [9]. 
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In order to find a good method of performing the sensitivity analysis, each particu-

lar sequencing problem should be studied separately. In this paper, three well-known 

sequencing problems are explored. The first two are the single machine sequencing 

problems denoted in Graham’s notation by 1|prec|maxwiLi and 1|outtree|wiCi. The 

third problem is the two machine permutation flow shop problem denoted by F2 

||Cmax. For all of the three considered problems polynomial algorithms have been de-

veloped (see [1], [7], [8]). In this paper, some additional results on each of the prob-

lems are presented. In particular, for each problem some sufficient and necessary con-

ditions of optimality are recalled. The sufficient and necessary conditions of 

optimality are then applied to the sensitivity analysis. 

2. Formulation of the problem 

Sequencing problem is a special case of the more general single machine schedul-

ing problem defined, for example, in [2]. Let us start with recalling the general formu-

lation of the sequencing problem. Let J = {1, 2, …, n} be a set of jobs ready for pro-

cessing at time 0. It is assumed that preemption of jobs is not allowed, i.e., the 

processing of each job cannot be interrupted. The set J may be partially ordered by 

some precedence constraints → between jobs. The set of all the precedence constraints 

is denoted by prec and it can be represented by an acyclic and directed graph without 

transitive arcs (see [2]). We assume that each solution is represented by 

a sequence (permutation) of jobs  = ( (1), …,  (n)),  (i)  J, i = 1, …, n. A given 

sequence   is feasible if it preserves all the precedence constraints between jobs, i.e., 

if i → j then job i must appear in   before job j. We will denote by  the set of all the 

feasible sequences. Let   be a set of all parameters given in the problem. The set   can 

include processing times, due dates, weights etc., given for all jobs. There is also given 

a cost function F :  → IR. The value of F() denotes the cost of the sequence  for the 

fixed parameters. For the fixed parameters the sequencing problem consists in calculat-

ing a feasible sequence   for which the value of the cost function is minimal. 

Assume that  is a given optimal sequence and P = {1, …, l}  , l  1, is 

a given subset of parameters. Let us assume that all the parameters in the set  \P are 

fixed and all the parameters in the set P are variables. Let V(P; ) be the set of all vec-

tors (1, …,  l)  IRl, for which the sequence  is optimal. If |P| = 1, then we get an 

important special case in which V(P; )  IR. In this case we obtain the sensitivity 

range for a chosen single parameter. If |P| > 1 then V(P; ) should be characterized by 

some relations between the parameters in the set P. In the next three sections we will 

show how to perform the sensitivity analysis for three well known sequencing prob-

lems. 
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3. The problem 1|prec|max wiLi 

In the problem under consideration the set of the parameters includes: nonnegative 

processing times pi, nonnegative due dates di and positive weights wi given for each 

job i  J. Thus   = {p1, …, pn, d1, …, dn, w1, …, wn}. Let us denote by Ci() the 

completion time of the ith job in a given sequence  , i.e., if i =  (k) then Ci() = 

)(1 j
k
j p= . The lateness Li() of  job i in the sequence   is equal to Ci() – di. Finally, 

the cost function F() is defined as follows: 

)(max)(  ii
Ji

LwF


= , 

thus the objective is to find a feasible sequence in which the maximal weighted late-

ness is minimal. The problem can be solved in O(n2) time by means of Lawler’s algo-

rithm [8]. Consider now a feasible sequence . A job k  J is called critical in  if it 

has the greatest weighted lateness in , i.e., 

 )(max)(  ii
Ji

kk LwLw


= . (1) 

Note, that there may appear more than one critical job in . Let us denote by Si(), 

i  J, the set containing all the jobs processed before job i in , which can be moved 

just after i without violating the precedence constraints. For example, consider the set 

of jobs J = {1, …, 6} with precedence constraints prec = {2 → 4, 2 → 1, 1 → 3, 3 → 6}. 

Let  = (2, 4, 1, 3, 5, 6) be a feasible sequence. We obtain S5() = {3, 4} since only 

jobs 3 and 4 can be moved just after job 5 in  without violating the precedence 

constraints. Job 2 cannot be moved just after job 5 because the sequence (4, 1, 3, 

5, 2, 6) is infeasible and similarly job 1 cannot be moved just after job 5 since the 

sequence (2, 4, 3, 5, 1, 6) is infeasible. The following theorem gives a sufficient 

and necessary condition of optimality of a given sequence in the considered prob-

lem [4]: 

Theorem 1. Let  be a feasible sequence. Then  is optimal if and only if there ex-

ists in  a critical job k  J for which the following condition holds: 

 ))(())(()( jkjkkkj dCwdCw
k

−−  S . (2) 

Let k  J be a job in a given feasible sequence . Consider the following system 

k(): 
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In the first row of k() we calculate the completion times of all the jobs in . In 

the second row we ensure that the given job k  J is critical in  (i.e., it has the great-

est weighted lateness in ). Finally, in the last row we check condition (2) for job k 

(see Theorem 1). It is a direct consequence of Theorem 1 that the sequence  is opti-

mal if and only if at least one of the systems k(), k  J, is uncontradictory (i.e., all 

conditions in k() are fulfilled). Now, we use this fact to show how to carry out the 

sensitivity analysis in the considered problem. Let P = {1, …,  l}    be a given 

subset of parameters. Let us define the set Vk(P; ), k  J, which consists of all the 

vectors of parameters (1, …,  l)  IRl for which the system k() is uncontradictory. 

We obtain the characterization of the set Vk(P; ) by simply fixing the values of the 

parameters from the set  \P in (3) and by simplifying the resulting system. If P consists 

of only one parameter, then Vk(P; ) is an interval in IR. If |P| > 1 then Vk(P; ) is de-

scribed by some simple relations between the parameters in the set P. Let us define: 

 
Jk

k PVPV


= );();(  . (4) 

The set V(P; ) consists of all the vectors of parameters (1, …, l) for which the 

sequence  is optimal, under the assumption that all the other parameters (i.e., parame-

ters from the set  \P) are fixed. In order to prove this fact assume that (1, …, l)  

V(P; ). From (4) we obtain that there exists k  J such that (1, …, l)  Vk(P; ), 

which means that the system k() is uncontradictory for (1, …, l). From the suffi-

cient condition in Theorem 1 we obtain that  is optimal in this case. On the other 

hand, assume that  is optimal for (1, …, l)  IRl. From the necessary condition in 

Theorem 1 we obtain that there must exist k  J for which the system k() is uncon-

tradictory for (1, …, l). This means that (1, …, l)  Vk(P; ) and by (4) it holds 

(1, …, l)  V(P; ). If the set P consists of only one parameter, then V(P; ) is 

a sum of at most n intervals and it can be easily calculated in polynomial time. If |P| > 1 

then the description of V(P; ) may be more complicated. 

Example 1. Let J = {1, …, 6}, prec = {3 → 4, 2 → 6}, with all the parameters pi, 

di, wi, i  J, being given in Table 1. 

We carry out the sensitivity analysis for  = (1, 2, 3, 4, 5, 6). First, we perform the 

sensitivity analysis for the single parameter p3, i.e., we are going to calculate the set 

V({p3}; ). From (4) it follows that we have to calculate all the sets Vk({p3}; ), k  J. 

As an example we show how to obtain V5({p3}; ). From the definition of Vk(P; ) it 

follows that the set V5({p3}; ) consists of all the values of p3, which fulfill the system 

5(), assuming that all the other parameters are fixed (their values are taken from 
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Table 1). So, we fix all the parameters apart from p3 in 5() (see (3)). We get C1 = 8, 

C2 = 12, C3 = 12 + p3, C4 = 14 + p3, C5 = 19 + p3, C6 = 21 + p3. We also have S5() = 

{1, 2, 4}. From (3) we obtain: 

 5() =
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Table 1 

Parameters of the sample problem 

i  J pi di wi 

1 8 5  1.1 

2 4 10 1   

3 3 13 1.4 

4 2 15 0.7 

5 5 6  0.3 

6 2 12 0.2 

Solving (5) we obtain p3  [2.75, 4.82], so V5({p3}; ) = [2.75, 4.82]. In the same 

way we obtain that V3({p3}; ) = [4.82, 8.5] and Vk({p3}; ) =  for k  {1, 2, 4, 6}. 

Finally, V({p3}; ) = V3({p3}; )  V5({p3}; ) = [2.75, 8.5]. It means that  remains 

optimal if and only if p3 belongs to the interval [2.75, 8.5]. 

In the same way it is possible to perform the sensitivity analysis for more than one 

parameter, for example, for p3 and w3. We obtain: 

V1({ p3, w3}; ) = , 

V2({ p3, w3}; ) = , 

V3({ p3, w3}; ) = {( p3, w3): p3  0, w3  0, 4.8  w3 ( p3 – 1)  5}, (6) 

V4({ p3, w3}; ) = , 

V5({ p3, w3}; ) = {( p3, w3): p3  2.75, w3  0, w3 ( p3 – 1)  3.9 + 0.3p3}, 

V6({ p3, w3}; ) = . 

 

From (4) and (6) we get 
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V({ p3, w3}; ) = V3({ p3, w3}; )  V5({ p3, w3}; ). 

In this case, the set V({ p3, w3}; )  IR2 is described by some relations between 

parameters p3 and w3. 

4. The problem 1|outtree|wiCi 

The set of parameters in this problem includes: nonnegative processing times pi 

and positives weights wi given for each job i  J, so   = {p1, …, pn, w1, …, wn}. We 

assume that the precedence constraints in the problem are of the outtree type. This 

means that each job in the graph of the precedence constraints has at most one direct 

predecessor (see, for example, Fig. 1). This assumption is necessary since the more gen-

eral problem, in which the precedence constraints are unrestricted, is strongly NP-hard 

even if wi = 1, i  J (see [2]). Let us denote by Ci() the completion time of the 

i-th job in a given sequence . The cost function takes the following form: 

)()(  ii

Ji

CwF 


= , 

thus the objective is to minimize the weighted sum of completion times. The problem 

can be solved in O(n2) time (see [1]). Let us now present some additional results on 

the problem considered. These results are presented in detail in [3]. Consider a feasible 

sequence . Any subsequence of jobs in  is called a block. For example, if  = (2, 3, 

1, 4, 5) then (2, 3, 1), (1, 4) and (5) are blocks in . We say that a block  = ( (1), …, 

 (u)) is simple if it consists of only one job or  (1) must precede all the jobs  (2), …, 

 (u) (in other words, if there is a path from job  (1) to each job  (2), …,  (u) in the 

graph of the precedence constraints). Assume that  1and  2 are two different blocks 

in a feasible sequence . We say that  1 ~  2 if and only if the following conditions 

hold: 

1. Block  2 is processed just after block  1 in , so  = ( 1, 1, 2, 2), where 1 

and 2 are blocks or empty sequences. 

2. Blocks  1 and  2 can be exchanged without violating the precedence con-

straints, i.e., the sequence   = ( 1, 2, 1, 2) is feasible. 

 

The following theorem holds [3]: 

Theorem 2. Assume that  is a feasible sequence. Then  is optimal if and only if 

for all simple blocks  1 and  2 in  such that  1 ~  2 holds: 
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Let SB() denote the set of all pairs of simple blocks ( 1,  2) in  such that  1 ~  2. 

The set SB() contains at most O(n2) elements and in [3] a polynomial algorithm for 

calculating the set SB() is presented. Having the set SB() we can construct the sys-

tem of |SB()| inequalities of the form (7). By Theorem 2 the sequence  is optimal if 

and only if all the inequalities in the resulting system are fulfilled. Taking advantage 

of this fact we show how to perform the sensitivity analysis for a given sequence . As-

sume that P = {1, …,  l}    is a given subset of parameters. We obtain the charac-

terization of the set V(P; ) by fixing the values of all the parameters from  \P in (7). 

If |P| = 1 then V(P; ) is an interval in IR. If |P| > 1 then V(P; ) is described by some 

simple relations between parameters in P. 

1
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3 7

6
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Fig. 1. Graph of the precedence constraints in the sample problem 

Table 2 

Parameters of the sample problem 

iJ pi wi 

1 9 2 

2 18 3 

3 8 3 

4 7 4 

5 14 1 

6 12 2 

7 18 3 

8 9 4 

Example 2. Consider a problem in which J = {1, 2, …, 8}, with all the parameters 

pi and wi, i  J being given in Table 2. The graph of the precedence constraints is giv-

en in Figure 1. We carry out the sensitivity analysis for the optimal sequence  = 

(1, 4, 3, 8, 7, 6, 2, 5). 
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First we calculate the set SB(): 

SB() = {((4), (3)), ((4), (3,8)), ((4), (3,8,7)), ((4), (3,8,7,6)), ((3,8,7,6), (2)), 

 ((3,8,7,6), (2,5)), ((8), (7)), ((7), (6)), ((6), (2)) ((6), (2,5))} . 

Let us show, for example, why ((3,8,7,6), (2,5))  SB(). It is easy to see that 

(3,8,7,6) and (2,5) are two neighbour blocks in , which can be exchanged without 

violating the precedence constraints (since jobs 2 and 5 have no predecessors in the set 

{3,8,7,6}). Block (2,5) is simple since 2 must precede job 5 and block (3,8,7,6) is sim-

ple since job 3 must precede jobs 8, 7 and 6 (see Fig. 1). 

Having the set SB() we construct inequalities (7) for the problem under consid-

eration: 

 w3p4  w4p3 

 (w3 + w8)p4  w4( p3 + p8) 

 (w3 + w8 + w7)p4  w4( p3 + p8 + p7) 

 (w3 + w8 + w7 + w6)p4  w4( p3 + p8 + p7 + p6) 

 w2( p3 + p8 + p7 + p6)  (w3 + w8 + w7 + w6) p2 

 (w2 + w5)( p3 + p8 + p7 + p6)  (w3 + w8 + w7 + w6)( p2 + p5) (8) 

 w7p8  w8p7 

 w6p7  w7p6 

 w2p6  w6p2 

 (w2 + w5)p6  w6( p2 + p5) 

It follows from Theorem 2 that  is optimal if and only if the parameters of the 

problem fulfil the system (8). Assume that we want to perform the sensitivity analysis 

for w3 and p3. We start with fixing all the parameters apart from p3 and w3 in (8). We 

obtain: 

 7w3  4p3 

 7(w3 + 4)  4( p3 + 9) 

 7(w3 + 7)  4( p3 + 27) 

 7(w3 + 9)  4( p3 + 39)    (9) 

 3( p3 + 39)  18(w3 + 9) 

 8( p3 + 39)  32(w3 + 9) 

Simplifying the system (9) we obtain: 
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Setting p3 = 8 in (10) we obtain .
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5. The problem F2 ||Cmax 

In this section, we consider the two machine flow shop sequencing problem denot-

ed by F2||Cmax in Graham’s notation. The set of jobs J = {1, …, n} must be processed 

on two machines M1 and M2. Each job i  J is processes first on the machine M1 and 

then on the machine M2. The order of processing is the same on both machines and it 

can be represented by a sequence of jobs . For each job i  J there are given 

nonnegative processing times ai and bi, respectively, on machines M1 and M2, thus 

 = {a1, …, an, b1, …, bn}. It is assumed that there are no precedence constraints be-

tween jobs, so each sequence of jobs is feasible. The objective is to calculate a se-

quence  for which the completion time of the last job is minimal. The problem con-

sidered can be solved in O(n log n) time by famous Johnson’s algorithm [7]. For each 

sequence  it is possible to construct the activity network presented in Figure 2. It is 

easy to observe that the completion time T() of the last job in  (i.e., the job  (n)) is 

equal to the length of the longest path from the vertex a(1) to the vertex b(n). The 

number of paths from a(1) to b(n) equals n. Thus, T() can be calculated as follows: 
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a(1) a(2) ... a(n)

b(1) b(2)
... b(n)  

Fig. 2. The activity network for sequence  
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A job  (r)  J, r = 1, …, n, is called critical in a given sequence   if the following 

condition holds: 

 
==

+=
n

ri

i

r

i

i baT )(

1

)()(  . (12) 

Thus, job  (r) is critical if and only if a(1) → … → a(r) → b(r) → … → b(n) is the 

longest path in the activity network for  . Note that there may appear more than one 

critical job in  . The following theorem holds [6]: 

Theorem 3. Sequence   is optimal if and only if there exists in   a critical job 

 (r) such that for all i  {1, …, r} and for all j  {r, …, n} holds: 

 },min{},min{ )()()()( ijji baba   . (13) 

Now, we show how to apply Theorem 3 to the sensitivity analysis. Let   be a given 

sequence of jobs let r  {1, …, n}. Consider the following system of inequalities  r(): 
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The system  r() consists of n + r(n – r + 1) inequalities. In the first row of  r() 

we check whether the job occupying the rth position in  is critical. In the second row of 

 r() we check conditions (13) from Theorem 3. It is clear that the sequence  is op-

timal if and only if at least one of the systems  r(), r = 1, …, n, is uncontradictory. 

Now, we can perform the similar analysis as in Section 2. For a given subset of pa-

rameters P = {1, …, l}    we define the set Vr(P; ), r = 1, ..., n, which consists 

of all the vectors of parameters (1, …, l) for which the system  r() is uncontradic-

tory (assuming that all the parameters from the set  \P are fixed). Finally, the set V(P; 

) can be calculated as follows: 

 );();(
1

 PVPV
n

r

r
=

= . (15) 

Using the same argumentation as in Section 3 we can prove that the set V(P; ) con-

sists of all the vectors of parameters (1, …,  l) for which the sequence  is optimal. 

Example 3. Consider a problem in which J = {1, 2, …, 6} and all the parameters ai 

and bi, i  J are given in Table 3. 
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Table 3 

Parameters of the sample problem 

i  J ai bi 

1 3 6 

2 7 4 

3 4 7 

4 5 3 

5 7 3 

6 2 2 

We perform the sensitivity analysis for the optimal sequence  = (1, 2, 3, 4, 5, 6) 

and for the parameters a3 and b3, so we want to characterize the set V({a3, b3}; ). 

First, we calculate all the sets Vr({a3, b3}; ), r = 1, …, n (see (15)) by fixing all pa-

rameters apart from a3 an b3 in  r(). After simplification we get Vr({a3, b3}; ) =  

for r  {1, 2, 3, 4, 6} and 

 
.}5,0]9,3[:),{(

}5,0]9,0[:),{()};,({

333333

3333333335

ababba

bababbabaV

−

−=
 (16) 

From (15) it follows that V({a3, b3}; ) = V5({a3, b3}; ) and V({a3, b3}; ) consists 

of all the vectors (a3, b3) for which  is optimal. Setting a3 = 4 in (16) we obtain 

V({b3}; ) = [3, 9] and setting b3 = 7 in (16) we get V({a3}; ) = [2, ). 

6. Conclusions 

In this paper, it is shown how to perform the sensitivity analysis for three partic-

ular sequencing problems. For all of the considered problems it is possible to give a 

full characterization of the set V(P; ). In particular, it is easy to calculate the sensi-

tivity range for each, single parameter. Sensitivity analysis is very important from 

the practical point of view. The assumption that all the parameters are known in 

advance is not valid for most of the real-world processes and it restricts the practical 

aspect of sequencing. Sensitivity analysis is one of the several possibilities of taking 

the precision into account. The obtained results may also be used as a background to 

investigate stochastic or fuzzy sequencing problems (see [5]). The work in the field 

of sensitivity analysis should be continued. The sensitivity analysis requires a par-

ticular problem to by analyzed more deeply. A good starting points is to formulate 

some sufficient and necessary conditions of optimality of a given sequence. This is 

the case for all the sequencing problems studied in this paper (see Theorems 1, 2 

and 3). 
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Analiza wrażliwości w problemach kolejnościowych 

Problem kolejnościowy jest specjalnym przypadkiem ogólniejszego problemu szeregowania. W pro-

blemie kolejnościowym celem podejmującego decyzję jest wyznaczenie dopuszczalnej kolejności (per-

mutacji) prac, dla której wartość zadanej funkcji kosztu jest najmniejsza. W typowym problemie kolejno-

ściowym zadane są pewne parametry (np. czas trwania prac), których wartości muszą być ustalone przed 

wyznaczeniem optymalnego rozwiązania. Po wyznaczeniu optymalnej kolejności prac istotne może być 

pytanie o stabilność otrzymanego rozwiązania. Można zapytać, w jakim zakresie mogą się zmieniać 

wartości parametrów problemu, aby otrzymane rozwiązanie pozostało optymalne? Taka analiza nazywa-

na jest analizą wrażliwości. Aby otrzymać efektywną metodę przeprowadzenia analizy wrażliwości, 

każdy szczególny przypadek problemu kolejnościowego należy badać osobno. W artykule przedstawiono 

efektywne metody przeprowadzenia analizy wrażliwości dla trzech wybranych problemów kolejnościo-

wych. 


