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Jerzy KAMBUROWSKI* 

ON THE UNKNOWN CONTRIBUTION OF STEFAN CHANAS 
TO THE STOCHASTIC FLOW SHOP ANALYSIS 

The paper deals with the problem of minimizing the makespan in flow shops with random job pro-
cessing times. We present recent advances in stochastic flow shop analysis in which the so-called revers-
ibility property plays a crucial role. The paper is written in memory of Stefan Chanas, who observed first 
that this property must be utilized in order to tackle the complexity of stochastic flow shops.  

1. Introduction 

Several years ago when I visited Stefan Chanas, my long time friend and actual 
supervisor of my Ph.D. thesis, we discussed the classical problem of minimizing the 
makespan in two-machine flow shops. I raised then the question why pairwise adja-
cent job interchange arguments are much more difficult to follow in the stochastic case 
than in the deterministic case. Clearly, suppose a set of jobs has to be processed in a 
flow shop with two machines A and B. Let πij = ( ρ, i, j, ω) and πji = ( ρ, j, i, ω) be two 
job sequences, where ρ and ω are subsequences of jobs excluding i and j. Denote the 
makespans of πij and πji by Mij and Mji, and let Dij and Dji be the makespans of ( ρ, i, j) 
and ( ρ, j, i), respectively. Then for the deterministic job processing times we have the 
following very intuitive relation: Dij  Dji implies Mij  Mji. However, when the job 
processing times are independent random variables: E(Dij)  E(Dji) does not imply 
E(Mij)  E(Mji). When I presented the above observation to Stefan, he responded, “It 
looks like the jobs of ω must play an important role”. After few seconds he added, 
“Why do we have to assume that the jobs are first processed on machine A and next 
on machine B. If we process the jobs in the reversed order and in the opposite direc-
tion, that is, first on B and next on A, the makespan remains the same.”  
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When later I reexamined the stochastic flow shop problem, I recalled Stefan’s idea. 
This simple excellent idea led to several publications, including [5, 6, 7], in which 
Stefan’s contribution remained unknown. Stefan strongly declined to have his name 
mentioned in acknowledgements. He pointed out that the reversibility property of flow 
shops had to have been known earlier, and as always he was right; see, e.g., Pinedo [9, 
p. 133]. However, this property was just stated and had never been utilized in the liter-
ature. The purpose of this paper is to summarize recent advances in stochastic flow 
shop analysis in which the reversibility property plays a crucial role.  

2. Two-machine flow shops 

A set of jobs, {1, 2, ..., n}, available at time zero has to be processed in a shop with 
two machines A and B. Each job is processed first on A and next on B. No machine 
can process more than one job at a time, no preemption is allowed, all setup times are 
included into the job processing times, and there is unlimited intermediate storage in 
between the machines. The problem is to determine a job sequence (permutation) that 
minimizes the completion time of the last job, also known as the makespan. 

2.1. Makespan representations 

Let Ak and Bk denote the processing times of job k on machine A and B, respective-
ly. To follow pairwise adjacent job interchange arguments, let πij = ( ρ, i, j, ω) and πji = 
( ρ, j, i, ω) be two job sequences, where ρ and ω are subsequences of jobs excluding i 
and j, and let Mij and Mji be the makespans of πij and πji. As Stefan noticed, if the jobs 
of a given sequence are processed in the reverse order and in the opposite direction 
(first on B and next on A), the makespans of both sequences are the same. By the re-
verse sequence of a given job sequence we mean the sequence defined above. Denote 
the sequences reverse to πij and πji by πij and πji, respectively. Thus, Mij and Mji are also 
the makespans of πij and πji. We assume that the jobs are processed as soon as possible 
(without unnecessary idle times) under πij, πij, πji, and πji. 

The following theorem gives convenient representations of Mij and Mji; compare 
with Theorem 1 in [6]. 

Theorem 1. The makespans Mij and Mji can be represented as follows: 

Mij = Aρ + Bω + Ai + Aj + Bi + Bj – Vij  and 

Mji = Aρ + Bω + Ai + Aj + Bi + Bj – Vji, 
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where Vij = min(min(Aj, Bi), Ai + Aj – QAB, Bi + Bj – QBA), 
 Vji = min(min(Ai,Bj), Ai + Aj – QAB, Bi + Bj – QBA), and 
 Aρ = kρ Ak, Bω = kω Bk, and QAB (QBA) is the additional time after Aρ (Bω) 

necessary to complete the processing of the jobs of ρ(ω) on B(A) under πij and πji (πij 
and πji). 

Proof. The makespan of a given job sequence in m-machine flow shops can be rep-
resented by the length of the critical (longest) path in an acyclic network [9, p. 131]. 
From the definition of Aρ, Bω, QAB and QBA, we have Mij = Aρ + Rij + Bω, where Rij is 
the length of the critical path in the “activity-on-arc” PERT network in Figure 1a. Since 
max(Ai + Aj + Bj, Ai + Bi + Bj) = Ai + Aj – min(Aj, Bi) + Bi + Bj, the networks in Figures 
1a and 1b have the same critical path length. It suffices now to extract the term Ai + Aj 
+ Bi + Bj from Rij and observe that Rij = Ai + Aj + Bi + Bj – Vij, which verifies the repre-
sentation of Mij. When we switch i and j, one obtains the representation of Mji.  
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Fig. 1. PERT networks for computing Rij 
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2.2. Optimal sequencing rules 

When the job processing times are deterministic, the proposed representations of 
Mij and Mji illustrate the nature of simplicity of the well-known Johnson’s sequencing 
rule [4]: 

 job i precedes job j if min(Aj, Bi) > min(Ai, Bj). (1) 

Since Vij and Vji defined in Theorem 1 differ only in the terms min(Aj, Bi) and 
min(Ai, Bj), the inequality min(Aj, Bi)  min(Ai, Bj) implies Vij Vji, and consequently, 
min(Aj, Bi)  min(Ai, Bj) implies Mij  Mji. Since min(Aj, Bi)  min(Ai, Bj) and min(Ak, 
Bj)  min(Aj, Bk) imply min(Ak, Bi)  min(Ai, Bk) [4], any job sequence determined by 
(1) is optimal. The term min(Aj, Bi) can be interpreted as the time savings from allow-
ing i and j to overlap under (i, j) [6]. Clearly, if these two jobs are not allowed to over-
lap, their processing time would be Ai + Bi + Aj + Bj. Thus, Johnson’s rule (1) states 
that job i must precede job j if the time savings under (i, j) are greater than under (j, i). 

Unfortunately, the above simple arguments are no longer valid when the job pro-
cessing times Ak and Bk are independent random variables. The following example 
shows that E(min(Aj, Bi))  E(min(Ai, Bj)) does not imply E(Mij)  E(Mji). 

Example 1. Consider three jobs 1, 2 and 3, and assume 1 and 3 have deterministic 
processing times P(A1 = 1) = P(B1 = 2) = P(A3 = 2) = P(B3 = 1) = 1, while A2 and B2 
are independent exponential random variables with a mean of 1. For the job sequences 
π12 = (1, 2, 3) and π21 = (2, 1, 3), we have E(min(A2, B1)) = 1 – e–2  1 – e–1 = 
E(min(A1, B2)), but E(M12) = 5.5 + ½ e–4  5.5092  5.3679  5 + e–1 = E(M21). 

Recall that a random variable X is stochastically smaller than another random vari-
able Y, written X st Y, if P(X  t)  P(Y  t) for every t. Moreover, X st Y implies 
E(X)  E(Y) . Below [X |Y = y] denotes a conditional random variable. 

From Theorem 1 one obtains immediately the following result. 

Theorem 2 [8]. A sufficient condition for Mij st Mji is 

[min(Aj, Bi)Ai + Aj = a, Bi + Bj = b] st [min(Ai, Bj)Ai + Aj = a, Bi + Bj = b]  

for all a and b in the supports of Ai + Aj and Bi + Bj, respectively.  
A non-negative random variable X has the Gompertz distribution (see, e.g., [3, 

p. 25]) with parameters   0 and   0, written X  G(, ), if its survival function is 
given by 

 S(x) = P(X  x) = exp[–(ex – 1)/] for x  0. (2) 

The median of X is 

 m = ln(1 +  ln2/)/. (3) 
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From (3) we have  =  ln2/(em – 1), and after substituting this expression to (2), 
one obtains the equivalent form of the survival function: 

      112 
γmγx eexS  for x  0. (4) 

Since    λxxS
γ




explim
0

 = exp(–xln2/m), the exponential distribution with the 

shape parameter  (or equivalently with the median m = ln2/) is the limiting distribu-
tion of the Gompertz distribution when  approaches zero. On the other hand, using 
(4), we have   1lim 


xS

γ
 for x < m and   0lim 


xS

γ
 for x > m, and thus the Gompertz 

distribution becomes degenerate at m, when  approaches infinity.  

Theorem 3 [5]. Let the job processing times Ak and Bk be independent random 
variables such that Ak  G(k, ) and Bk  G(k, ) for k = 1, 2, ..., n. Then a sufficient 
condition for Mij st Mji is j + i  i + j.  

Theorem 3 leads directly to the following result. 

Corollary 1 [5]. Let the job processing times Ak and Bk be independent random 
variables such that Ak  G(k, ) and Bk  G(k, ) for k = 1, 2, ..., n. Then the rule: job 
i precedes job j if j + i  i + j yields a job sequence that minimizes stochastically 
the makespan. 

Since the degenerate and exponential distributions are limiting distributions of the 
Gompertz distribution, the sequencing rule stated in Corollary 1 can be regarded as 
a generalization of Johnson’s and Talwar’s sequencing rules. 

Corollary 2 
(i) [4] Let the job processing times Ak and Bk be deterministic for k = 1, 2, ..., n. 

Then the rule: job i precedes job j if min(Aj, Bi)  min(Ai, Bj) yields a job sequence that 
minimizes the makespan. 

(ii) [1, 11] Let the job processing times Ak and Bk be independent and exponential 
random variables with shape parameters k and k, respectively, for k = 1, 2, ..., n. 
Then the rule: job i precedes job j if j + i  i + j yields a job sequence that mini-
mizes stochastically the makespan.  

3. Three-machine flow shops 

Although all results in this section can be generalized to the case of an arbitrary 
number of machines, for clarity of presentation, we have decided to discuss the case of 
three machines. 
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A set of jobs, {1, 2, ..., n}, available at time zero has to be processed in a flow shop 
with three machines A, B and C, that is, each job has to be processed first on A, next 
on B, and next on C. The problem is to determine a job sequence with the minimum 
makespan, and this problem is known to be strongly NP-hard [2]. 

3.1. Makespan representations 

Let Ak, Bk, and Ck denote the processing times of job k on machine A, B and C, re-
spectively. As Stefan observed, when the jobs of a given sequence go through a flow 
shop in the reverse order and in the opposite direction (first on C, next on B, and last 
on A), then the makespans of both sequences are the same. As previously let Mij (Mji) 
be the makespan of πij = ( ρ, i, j, ω) and πij (πji = ( ρ, j, i, ω) and πji). 

The following theorem shows convenient representations of Mij and Mji. 

Theorem 4 [7]. The makespans Mij and Mji can be represented as follows: 

Mij = Aρ + Cω + Aij + Bij + Cij – Vij    and    Mji = Aρ + Cω + Aij + Bij + Cij – Vji, 

where Vij and Vji are the shortest path lengths in the networks of Figure 2, and 

Aρ =  kρ Ak, Cω =  kω Ck, Aij = Ai + Aj, Bij = Bi + Bj, Cij = Ci + Cj, and  

QAB (QAC) = the additional time after Aρ necessary to complete the processing of 
the jobs of ρ on B (C) under πij and πji, 

QCB (QCA) = the additional time after Cω necessary to complete the processing of 
the jobs of ω on B 

and (A) under πij and πji.  
Below we present some interpretations for the case of πij and πij; analogous inter-

pretations are valid for the case of πji and πji. 
Let Sij = min(Aj + Bj, Bi + Ci, Aj + Ci), that is, Sij is the shortest path length in the 

subnetwork restricted to heavy arcs in the network representing Vij. Then Aij + Bij + Cij 
– Sij is the makespan of (i, j). Sij can be interpreted as the time savings from allowing 
jobs i and j to overlap on A, B and C under (i, j). Clearly, if i and j are the only jobs in 
the system, and they are not allowed to overlap, then their processing time would be 
Aij + Bij + Cij. The terms min(Aj, Bi) and min(Bj, Ci) can be interpreted as the time sav-
ings from allowing jobs i and j to overlap on A and B, and B and C under (i, j).  

From Theorem 4 one can easily derive the following result that is due to Wło- 
dzimierz Szwarc, a supervisor of Stefan’s master thesis. 

Corollary 3 [10]. For the deterministic job processing times, sufficient and 
equivalent conditions for Mij  Mji are 

 



On the unknown contribution of Stefan Chanas... 81

(i) min(Aj, Bi)  min(Ai, Bj), min(Bj, Ci)  min(Bi, Cj), and Sij  Sji. 
(ii) min(Aj, Bi)  min(Ai, Bj), min(Bj, Ci)  min(Bi, Cj), and min(Aj, Ci)  min(Ai, 

Cj). 

Aij + Bij - QAC

Aij - QAB

Bij + Cij - QCA

Aj

Cij - QCB

Ci

Bi

Bj

11

3

2

4

Vij

0

 
 

Aij + Bij - QAC

Aij - QAB

Bij + Cij - QCA

Ai

Cij - QCB

Cj

Bj

Bi

11

3

2

4

Vji

0

 

Fig. 2. Shortest path networks for computing Vij and Vji 
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3.2. Optimal sequencing rules 

Assume that the job processing times Ak, Bk and Ck are independent random varia-
bles. The following theorem can be regarded as a stochastic counterpart of Corollary 3 
(ii).  

Theorem 5 [7]. A Sufficient condition for Mij st Mji is 
[min(Aj, Bi)/Ai + Aj = a, Bi + Bj = b] st [min(Ai, Bj)/Ai + Aj = a, Bi + Bj = b], and 
[min(Bj, Ci)/Bi + Bj = b, Ci + Cj = c] st [min(Bi, Cj)/Bi + Bj = b, Ci + Cj = c], and 

[min(Aj, Ci)/Ai + Aj = a, Ci + Cj = c] st [min(Ai, Cj)/Ai + Aj = a, Ci + Cj = c], 
for all a, b and c in the supports of Ai + Aj, Bi + Bj and Ci + Cj, respectively.  
Using Theorem 5 one can prove the next result concerning Gompertz distributed 

job processing times. 

Theorem 6 [5]. Let the job processing times Ak, Bk and Ck be independent random 
variables such that Ak  G(k, ), Bk  G(k, ), and Ck  G(k, ) for k = 1, 2, ..., n. 
Then a sufficient condition for Mij st Mji is aj + i  i + j and j + i  i + j. 

Under the assumption stated in Theorem 6, we propose the following algorithm 
whose idea is adopted from [10]. 

Algorithm 1 
Step 1. Determine a sequence  by applying the rule: i precedes j if j + i  i + j. 
Step 2. Reorder all segments of  according to: i precedes j if j + i  i + j. (A 

subsequence  of  is called a segment if j + i = i + j for all jobs i and j belonging 
to .)  

Corollary 4 [5]. Let the job processing times Ak, Bk and Ck be independent random 
variables such that Ak  G(k, ), Bk  G(k, ), and Ck  G(k, ) for k = 1, 2, ..., n. If 
(j + i – i – j)(j + i – i – j)  0 for all i  j, then Algorithm 1 finds a job se-
quence that minimizes stochastically the makespan. 

Corollary 4 can be regarded as a generalization of the results in [7, 10] that dealt 
with the exponential and deterministic cases. 
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O nieznanym przyczynku Stefana Chanasa 
do analizy stochastycznych systemów przepływowych 

W artykule rozważany jest problem wyznaczania optymalnej kolejności obsługi zadań w stocha-
stycznych systemach przepływowych. Za kryterium optymalizacji przyjmuje się minimalizację czasu 
zakończenia obsługi. Zaprezentowano ostatnie osiągnięcia w analizie stochastycznych systemów prze-
pływowych, w których tzw. zwrotne właściwości odgrywają kluczową rolę. Zwrotność to następująca 
własność każdego systemu przepływowego: jeżeli zadania są obsługiwane w odwrotnej kolejności 
i w odwrotnym porządku, to czas zakończenia obsługi pozostaje taki sam. 

Artykuł poświęcony jest pamięci Stefana Chanasa, mojego długoletniego przyjaciela i faktycznego 
promotora mojego doktoratu. To On zauważył pierwszy, że własność zwrotności musi być wykorzystana 
w analizie złożoności systemów przepływowych. 


