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A DEFINITION OF SUBJECTIVE POSSIBILITY 

The problem of finding a suitable belief function consistent with a given possibility distribu-

tion is considered. It is proved that this function is unique and consonant thus representable by 

means of a possibility distribution. The possibility distribution is subjective and unique. The r e-

sults obtained in the paper allow us to define subjective possibility degrees, hence the member-

ship function of fuzzy number. 

1. Introduction 

Quantitative possibility theory was proposed as an approach to the representation of 

linguistic imprecision (Zadeh, 1978) and then as a theory of uncertainty of its own (Du-

bois and Prade 1988, 2002; Dubois et al. 2000). In order to sustain this claim, operation-

al semantics is requested. In the subjectivist context, quantitative possibility theory 

competes with probability theory in its subjectivist or Bayesian views and with the 

Transferable Belief Model (Smets and Kennes 1994; Smets 1998), both of which also 

intend to represent degrees of belief. The term subjectivist means that we consider prob-

ability, and other numerical set-functions proposed for the representation of uncertainty, 

as tools for quantifying an agent’s beliefs in events without regard to the possible ran-

dom nature and repeatability of the events. An operational definition, and the assessment 

methods that can be derived from it, provides a meaning to the value.7 encountered in 

statements like “my degree of belief is.7”. Bayesians claim that any state of incomplete 

knowledge of an agent can (and should) be modelled by a single probability distribution 
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on the appropriate referential, and that degrees of belief coincide with probabilities that 

can be revealed by observing the betting behaviour of the agent (how much would the 

agent pay to enter into a game). In such a betting experiment, the agent provides betting 

odds under an exchangeable bet assumption. A similar setting exists for imprecise prob-

abilities (Walley, 1991), relaxing the assumption of exchangeable bets, and more recent-

ly for the Transferable Belief Model as well (Smets, 1997), introducing several betting 

frames corresponding to various partitions of the referential. In that sense, numerical 

values encountered in these three theories are well-defined. 

Quantitative possibility theory seems to be worth exploring as well from this 

standpoint. Rejecting it because of the current lack of convincing semantics would be 

unfortunate, simply because it entertains close formal relationships between other 

theories: possibility measures are consonant Shafer plausibility measure, and thus 

encode special families of probability functions. Since possibility theory is a special 

case of most existing non-additive uncertainty theories, be they numerical or not, pro-

gress in one of these theories usually has impact in possibility theory. The recent re-

vival along the lines of Walley’s imprecise probabilities, by De Cooman and Aeyels 

(1999), of a form of subjectivist possibility theory initiated by Giles (1982), and the 

development of possibilistic networks based on incomplete statistical data (Borgelt 

and Kruse, 2003) also suggest that it is fruitful to investigate various operational se-

mantics for possibility theory. Another major reason for studying possibility theory is 

that it is very simple, certainly the simplest challenger for probability theory, especial-

ly in the form of fuzzy numbers, a mathematical model extensively used by Chanas in 

his works (e.g., Chanas and Kuchta, 1998; Chanas and Zielinski, 2001) as well as 

many other scholars in fuzzy optimization.  

The aim of this paper is to propose subjectivist semantics for numerical possibil-

ity theory based on exchangeable bets. Such subjectivist semantics differs from the 

upper and lower probabilistic setting proposed by Giles (1982), Walley (1991) and 

followers, without questioning its merit. This school interprets the maximal ac-

ceptable buying price of a lottery ticket pertaining to the occurrence of an event as 

its lower probability, and the minimal sale price of the same lottery ticket as its 

upper probability, both prices being distinct. Here, we assume exchangeable bets, 

just like the Bayesian School, but we consider that betting rates only partially re-

flect an agent's beliefs. In other words, betting rates produce a unique probability 

distribution but they are induced by the agent’s beliefs without being in one-to-one 

correspondence with them. For instance, an agent may assign equal probabilities to 

the facets of a die, either because the fairness of the die has been experimentally 

validated, or, by symmetry, just because this agent does not know whether the die is 

biased or not. Clearly, beliefs entertained by the agent in both situations are very 

distinct (Dubois and Prade, 1990). In this paper, we assume that beliefs are more 

naturally modelled by means of a belief function, thus leaving room for incomplete 

knowledge (Dubois et al., 1996).  
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In previous works, Smets (1990) axiomatically argued that there exists a natural 

transformation of a belief function into a (so-called pignistic) probability function 

such that if the agent’s beliefs are modelled by the former, his betting rates are cap-

tured by the latter. He called it the pignistic transformation. It was previously suggest-

ed by Dubois and Prade (1982) in the setting of belief functions and formally coin-

cides with the Shapley value in game theory (Shapley, 1953); see Dubois and Prade 

(2002). Denneberg and Grabisch (1999) have generalized it to so-called interaction 

weights attached to all subsets (not only to singletons). Moreover, in the case of pos-

sibility distributions, corresponding to consonant plausibility functions, the transfor-

mation is one-to-one. In general, however, distinct belief functions may correspond to 

the same pignistic probability. The pignistic transformation has been proposed by 

several authors in yet a different context. Kaufmann (1980) and Yager (1982) pro-

posed a scheme for the random simulation of a finite fuzzy set: picking 

a membership grade at random in the unit interval, and then randomly picking a value 

of the variable in the corresponding cut of the fuzzy set. In the continuous setting, 

Chanas and Nowakowski (1988) proposed a more general probabilistic interpretation 

of fuzzy intervals based on a similar interpretation. 

This paper formalizes and solves the following problem: given a subjective 

pignistic probability distribution p provided by an agent in the form of betting rates, 

find a suitable least committed belief function whose pignistic transform is p. Such a 

belief function is a cautious representation of the agent’s belief, assuming minimal 

statistical knowledge. For instance, if the agent supplies a uniform probability, it is 

assumed by default that the agent has no information. In that case, an unbiased repre-

sentation is the vacuous belief function, or equivalently, the uniform possibility dis-

tribution, thus reversing Laplace’s principle of indifference.  

The main result of the paper is that the least committed belief function with pre-

scribed pignistic transform is unique and consonant, that is, it can be modelled as 

a possibility distribution. This result was already announced by the authors (Dubois et 

al., 2001), but its proof is still unpublished. Since the pignistic transformation is one- 

-to-one for possibility distributions, this result also provides the converse transform 

with a natural interpretation, first suggested with a different rationale by Dubois and 

Prade (1983). This result also sheds light on the probabilistic interpretation of fuzzy 

numbers suggested by Chanas and colleagues in his work. 

2. Belief functions 

Consider beliefs held by an agent on what is the actual value of a variable ranging 

on a set , called the frame of discernment. It is assumed that such beliefs can be 
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represented by a belief function. A belief function can be mathematically defined from 

a (generally finite) random set that has a very specific interpretation. A so-called basic 

belief mass m(A) is assigned to each subset A of , such that m(A)  0, A    more- 

over: 

 A m(A) = 1. 

The degree m(A) is understood as the weight given to the fact that all the agent 

knows is that the value of the variable of interest lies somewhere in set A, and nothing 

else. In other words, the probability allocation m(A) is potentially shared between 

elements of A, but remains suspended for lack of knowledge. A set E such that m(E) > 0 

is called a focal set. In the absence of conflicting information it is generally assumed 

that m = 0. This is what is assumed in the following. A belief function Bel as well as 

a plausibility function Pl, attached to each event (or each proposition of interest) can 

be bijectively associated with the basic mass function m (Shafer, 1976). They are 

defined by  

Bel(A) =   E  A m(E) ;    Pl(A) = 1 – Bel(A
c
) = E:E  A   m(E), 

where Ac is the complement of A. The belief function evaluates to what extent events 

are logically implied by the available evidence. The plausibility function evaluates to 

what extent events are consistent with the available evidence. A companion set- 

-function, called commonality, and denoted by Q, is defined by reversing the direction 

of inclusion in the belief function expression: 

Q(A) = A  E m(E). 

Q(A) is the share of belief totally unassigned and free to potentially support any 

proposition in the context where the agent accepts that A holds true1. It can be argued 

that Q(A) is a measure of guaranteed plausibility of A because it clearly provides 

a lower bound of the plausibility of each element in A.  

The function Pl restricted to singletons, induced by a mass function m is called its 

contour function (Shafer, 1976), and is denoted by m, defined by m() = Pl({}). 

When the focal sets are nested, the plausibility function is called a possibility measure 

(Zadeh, 1978), and can be characterized, just like probability, by its contour function, 

then called a possibility distribution . In such a situation, the primitive object can be 

the possibility distribution, and each of the functions m, Pl, Bel, can be reconstructed 

from it, noticing that (Dubois and Prade, 1982)  

                                                      
1 When conditioning a mass function on event A, the mass m(E) of each focal set E is allocated to the 

subset A  E. The overall (possibly subnormal) mass finally allocated to a subset C of A is denoted 

m(CA). Then Q(A) coincides with the mass m(AA) assigned to set A before normalizing. So, up to nor-

malization, Q(A) is a measure of unassigned belief in the context where the agent accepts that A holds 

true. 
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 Pl(A) = max A  ()  () 

The set function Pl is then often denoted by . If  = {1, … n}, and letting 

 i = ( i), such that 1 = 1   2   …  n  n+1 = 0, then the mass function generat-

ing  is denoted by m such that 
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If the mass function m is not consonant the contour function is not enough to re-

cover it as in (2) since m then needs up to 2card( ) terms to be determined from m 

where card stands for cardinality. 

3. The pignistic transformation  

It is assumed that the actual beliefs of the agent can be faithfully modelled by 

a mass function on . A probability measure induced by a mass function can be built 

by defining a uniform probability on each set with positive mass, and performing the 

convex mixture of these probabilities according to the mass function. This transfor-

mation, which, as pointed out earlier, recurrently appears in various contexts since the 

fifties, was called the pignistic transformation by Smets (1990). Let m be a mass func-

tion from 2 to [0, 1]. The pignistic transform of m is a probability distribution BetP 

= Pig(m) such that: 

 BetP() = A: A m(A)/card(A). (3) 

where card(A) is the cardinality of A. It could be viewed as an extension of Laplace 

indifference principle, according to which equally possible outcomes have equal 

probability. It looks like a weighted form thereof, since, by symmetry, each focal set 

is then interpreted as a uniform probability. According to (Smets, 1991), the agent’s 

beliefs cannot be directly assessed. All that can be known are the values of the 

“pignistic” probabilities the agent would use to bet on the frame . Only the probabil-

ity distribution BetP, not the belief function accounting for the agent’s beliefs, is ob-

tained by eliciting an agent’s betting rates on the frame  (Smets, 2002). 

The pignistic probability depends on the chosen betting frame. Changing  into 

one of its refinements, thus modifying the granularity, a different probability is ob-

tained. It has been proved that for any event A, the minimal (resp. maximal) value of 

BetP(A) = A BetP() over all possible changes of granularity yields back Bel(A) 

(resp. Pl(A)) (Wilson, 1993). So, the interval [Bel(A), Pl(A)] contains all possible 

values of the pignistic probability of A, across all betting frames. This is related to the 
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fact that all probability functions P dominating the belief function Bel induced by m 

(that is, P  Bel) can be generated by changing each focal set E into a probability dis-

tribution p(|E) with support E. Namely: 

p() = E p( E) : m(E). 

In Bayesian terms, this is an application of the total probability theorem where 

p(E) is the (subjective) probability of  when all that is known is the piece of evi-

dence E, and m(E) is the probability of knowing this piece of evidence only. So, in 

terms of upper and lower probabilities, BetP is the centre of gravity of the set of prob-

abilities dominating the belief function (Dubois et al., 1993). In terms of game theory, 

it corresponds to the Shapley value of a game. 

In the special case of consonant belief functions, the pignistic transformation can 

be expressed in terms of the possibility distribution   such that 1 = 1  2    n  

n+1 = 0 as follows, letting pi = BetP( i):  

pi = j = i, …, n ( j −  j+1)/j i = 1, …, n. 

It can be checked that p1  p2  …  pn and that the transformation is bijective be-

tween probabilities and possibilities. Its converse Pig–1 was independently suggested 

by Dubois and Prade (1983). It reconstructs the possibility distribution as follows 

 i = j = 1,…, n min(pi, pj), i = 1, …, n (4) 

and we write  = Pig–1 (BetP). Note that another probability-possibility transfor-

mation exists, of the form (Dubois and Prade, 1982 ; Delgado and Moral 1987):  

 i = j = i, …, n pj, i = 1, …, n. (5) 

The latter transformation of a probability distribution p yields the most specific (= 

restrictive) possibility distribution such that (A)  P(A). When p stems from validat-

ed statistical data, one may argue that this transformation yields the most legitimate 

possibilistic representation of P (Dubois et al., 2001) since p represents a complete 

model of the studied random phenomenon understudy and (5) yields the most specific 

possibility distribution respecting the ordering of elements of  induced by p, in the 

sense that j=1, …,n j is minimal (minimal cardinality of the fuzzy set with membership 

grades j). However, in the subjective probability case, it is questionable whether the 

expert possesses a complete model, even if the betting framework enforces it. If the 

parameter under consideration is random, the agent may have only partial 

knowledge about it. If the parameter is not random (just ill-known), a complete 

model should come down to knowing its precise value. Hence the optimal (maxi-

mally specific) transformation (5) does not convincingly apply to subjective probabil-

ities. 
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4. The most cautious belief function inducing 

a subjective probability 

The knowledge of the values of the probability p allocated to the elements of  by 

the agent is not sufficient to reconstruct a unique underlying belief function whose 

pignistic transform is p. Many belief functions induce the same pignistic probability 

distribution. As already said, for instance, uniform betting rates on  either corre-

spond to complete ignorance on the values of the variable, or to the knowledge that 

the variable is random and uniformly distributed. So, all that is known about the mass 

function that represents the agent’s beliefs is that it belongs to the ones that induce the 

available subjective probability. Under this scheme, we do not question the exchange-

ability of bets, as done by Walley (1991), Giles (1982) and others. What we question 

is the assumption of a one-to-one correspondence between the betting rates produced 

by the agent, and the actual beliefs entertained by this agent. Betting rates do not tell 

us whether the uncertainty of the agent results from the perceived randomness of the 

phenomenon under study or from a simple lack of information about it. 

Since several mass functions may lead to the same betting rates, one has to select 

the least committed among these mass functions, as the one that, by default, reflects 

the actual state of belief of the agent. The belief functions whose pignistic transform 

is p are called isopignistic belief functions and form the set IP( p). A cautious ap-

proach among isopignistic belief functions is to obey a “least commitment principle”. 

It states that one should never presuppose more beliefs than justified. Then, one 

should select the least committed element, that is, the least informed one, in the fami-

ly of isopignistic belief functions corresponding to the pignistic probability function 

prescribed by the obtained betting rates.  

4.1. Informational comparison of belief functions 

There are several methods of comparing belief functions in terms of their informa-

tional contents. Some informational indices extend the probabilistic notion of entropy. 

Others ones generalize the notion of cardinality of a set representing incomplete 

knowledge, yet other ones combine both (see the recent survey by Klir and Smith 

(2001), for instance). Besides, three partial orderings comparing the information con-

tent of two belief functions in terms of specificity have been proposed by Yager 

(1985) and Dubois and Prade (1986).  

A first natural specificity ordering of belief functions compares intervals limited 

by belief and plausibility. Namely the interval [Bel(A), Pl(A)] is all the wider as the 

information concerning A is scarce. So, a partial information order on the set of belief 
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functions over  can be defined as follows: Bel1 is at least as precise as Bel2 if and 

only if [Bel1(A), Pl1(A)]  [Bel2(A), Pl2(A)], A   it corresponds to an inclusion 

relation between sets of probabilities dominating Bel1 and Bel2. In fact, this ordering 

can be defined equivalently and more simply as Pl1(A)  Pl2(A), A   due to the 

duality between Bel and Pl. 

Interestingly, this partial ordering does not imply any relationship between the 

commonality functions Q1 and Q2 (see Dubois and Prade, 1986 and the counterexam-

ple below). Another partial informational ordering between belief functions has thus 

been defined by comparing the commonality functions: Bel1 is at least as Q-informed 

as Bel2 if and only if Q1(A)  Q2(A), A    This direction of inequality is natural 

since it ensures that for singletons, Pl1({})  Pl2({}), due the identity of Pl and Q 

functions on singletons.  

A third partial informational ordering can be described directly from the mass 

functions m1 and m2. The idea is that Bel1 is at least as informed as Bel2 whenever it is 

possible to turn m2 into m1 by consistently reassigning each weight m2(E) to subsets 

of E that are focal sets of m1 (possibly splitting the masses among them). It is called 

the specialization ordering. Namely, m1 is more specialized than m2 if and only if 

there is a stochastic matrix W whose rows correspond to focal sets of m1 and columns 

to focal sets of m2, such that m1 = W  m2. Here, mass functions are encoded as vectors 

and entry wij reflects the proportion of the mass m2(Ej) allocated to focal set Fi 

of m1, with the condition that Fi must be a subset of Ej for wij to be positive.  

This third ordering is more demanding than the other ones and implies them. But 

the Q-informativeness and the precision orderings are not comparable. 

Example 1. Suppose  = 1 2 3  =    =     ( ) 

Consider the mass function m(E) = , m(F) = 1 − , and the possibility measure  

such that  (1) = 1,  (2) = ,  (3) = 1− . It is clear that Pl(}) = (),  ; the 

mass function associated to  by (2) is m(1}) = − , m(E) =  − , m( ) = 

1 − . It is obvious that none of the two mass functions m and m is a specialization of 

the other since m has a focal element contained in none of E or F, and a focal element 

containing none of them. Now it is obvious that m is at the same time less precise and 

more Q-informed than m . Indeed, Pl(A)   (A), A, and Pl(2, 3}) = 1 >  (2, 

3}) = . However Q(A) = Q(A), A, and Q(2, 3}) = 1 −  > Q(2, 3}) =  . 

In view of this situation, the interpretation of the Q-informativeness is somewhat 

problematic. Nevertheless, all three orderings coincide for possibility measures and 

come down to the possibilistic ordering of specificity on singletons (Yager, 1983; 

Dubois and Prade, 1988): 1 is at least as informed as 2 if and only if 1 = 2).  

While the merit of such partial informational orderings is to lay bare the meaning 

of the comparison, they often lead to non-comparability. Indeed, one may try to define 

the least debatable representation of an agent’s belief as a minimally informative iso-
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pignistic mass function according to one of these orderings. Unfortunately, unicity 

may easily fail for these least informative mass functions, as the corresponding opti-

mization problem comes down to vector maximization.  

4.2. Using expected cardinality 

An easier problem is to maximize an information index. A natural measure of non- 

-commitment of a belief function is the average of the cardinalities of its focal ele-

ments, weighted by the mass function m:  

I(m) = A    m(A)  card(A). 

It is the simplest imprecision measure. It is easy to see that I(m) is the cardinality 

of the fuzzy set whose membership function coincides with the contour function (Du-

bois and Jaulent, 1987), namely, I(m) =     m().  

It is clear that this index is compatible with the specialization ordering (hence with 

the two other informational orderings), namely that if m1 is more specialized than m2 

then I(m1) = I(m2). 

We define the least biased belief representation, for an agent supplying a pignistic 

probability p, as the belief function whose mass m* maximizes I(m) among isopi-

gnistic belief functions whose pignistic transform according to eqn. (4) is p. The fol-

lowing result is now established. 

Theorem 1. The unique mass function which maximizes I(m) under the constraint 

Pig(m) = p exists and is consonant. It is the possibility distribution  defined by the 

converse of the pignistic transformation applied to p (restricted to possibility 

measures, as defined by (4)). 

The proof of this result is based on the following lemma: 

Lemma 1. For any belief function with mass function m, I(Pig–1(Pig(m))  I(m), 

and I(Pig–1(Pig(m)) = I(m) only if m is consonant. 

Proof: Consider p = Pig(m), such that p1   p   …   pn and  = Pig–1(p) such that 

1 =     …  n  n+1 = 0. It can be checked that  

I(Pig–1( p)) =  i = 1, …, n i  

=  i = 1, …, n j = 1, …, n min( pi, pj) =  i = 1, …, n(2i − ) pi 

(I(Pig–1(p)) is the sum of entries in the n  n matrix with coefficients min( pi, pj). 

There is only one entry containing p1, 3 entries containing p2, etc.). 

Now, since pi = E: iE m(E)/card(E), it remains to show that  



D. DUBOIS et al. 

 

16 

 i = 1, …n(2i − )E:iE m(E)/card(E)   i = 1, …nE: iE m(E). 

Subtracting the right-hand side from the left-hand side, and factoring m(E), it is 

enough to prove that the multiplicative coefficient of m(E) is positive, that is, denot-

ing by E the indicator function of E:  

c(E) = i = 1, …n (2i − ) E (i)/card(E) −  i = 1, …n E ( i)  0. 

Let E be a subset with k elements of the form {i1,  ik} such that p({i1)  

p({ i2)  …  p({ ik) Then:  

c(E) = [(2i1 − )k + (2i2 − )k + … + (2ik − )k] − k. 

It is minimal for ij = j for all j = 1, … k. Hence 

c(E)  [(2 − )k + (4 −)k +…+ (2k − )k] − k = (2/k)(j = 1, …k j) − k − =  

It is clear that if c(E) > 0 for any E, then I(Pig−(Pig(m))  I(m) as soon as m(E) > 0. 

But since ij  j by construction, the only way of having c(E) > 0 for some set E is to 

have ij  j for some i, that is, E is not of the form {1, … k} for some k. But m is not 

consonant as soon as m(E) > 0 for such a set E (as Pig(m) = p and the only consonant m 

in IP(p) is ). Hence as soon as m is not consonant in IP( p), I(Pig−( p))  I(m). 

Proof of theorem 1. Since I(Pig−(Pig(m)) I(m) from the lemma, and Pig is a bi-

jection on possibility measures, the consonant belief function associated to 

Pig−(Pig(m)) is no more cardinality-specific than the belief function induced by m. 

Conversely fixing the probability distribution p, and choosing any non-consonant m in 

IP(p), I(Pig−(p))  I(m). It follows that the consonant mass function associated to 

Pig−(p) is the unique maximum of I(m). 

4.3. Comparing commonalities  

Smets (2000) suggested that the least specific isopignistic belief function accord-

ing to the commonality ordering is also Pig−(Pig(m)). This ordering is less intuitive 

than the specialization ordering and the inclusion of Bel-Pl intervals. However, there 

is indeed a unique minimally Q-informative belief function in IP(p), and it is precisely 

the one found by maximizing I(m). In order to show it, we first prove that, for ensur-

ing comparability in the sense of the Q-informativeness ordering between a consonant 

belief function and a belief function, it is enough to rely on singletons: 

Lemma 2. Consider a belief function with mass function m and a possibility dis-

tribution  with respective commonality functions Q and Q . Then Q(A)  Q(A), 

A    if and only if ()  Pl({}),   
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Proof. It is obviously enough to prove the “if” part since Q({}) = Pl({}). Be-

sides, note that for possibility measures Q(A) = minA() Now assume ()  

Pl({}),    Then : Q(A) = minA() = ()  Pl({})  Q(A) since func-

tion Q is antimonotonic with respect to inclusion. 

Theorem 2. The unique consonant mass function in IP( p) (induced by the possi-

bility distribution defined by (4)), is minimally Q-informative.  

As previously we need one more lemma. 

Lemma 3. Consider a belief function with mass function m, p = Pig(m), and  = 

Pig−(p). Then   m, i.e.,  is not more specific than the contour function of m. 

Proof. Consider p = Pig(m), such that p  p  …  pn and  = Pig−(p) such that 

1 =     …  n  n+1 = 0. Now k = k() is defined in terms of m as  

k = k  pk + j= k+1,…n pj = k E:kEm(E)/card(E) +j = k+1,…nE:jEm(E)/card(E). 

We must show that this expression is not less than E:kEm(E) = Pl({k}) = 

m(k). To this end we proceed focal set by focal set, with fixed cardinality. Denote 

by c(E) the multiplicative coefficient of m(E) in the expression of k, namely, denot-

ing by E the indicator function of E:  

c(E) =  k  E (k)/card(E) + j = k+1,…n  E( j)/card(E). 

Let us show that c(E)  1 whenever k  E (otherwise m(E) does not contribute to 

m()). 

First, assume card() = n. This means that E = . The coefficient c() of m() is 

(k/n + (n − k)/n) = 1 since all terms in the second summand of the expression of c(E) 

are present.  

Now, assume card() = i > k. There are at least i − k terms in the second summand 

of the expression of c(E). Then c(E)  (k/i + (i − k)/i) = 1. 

Assume card() = i  k. Then the second summand of the expression of c(E) may 

be zero since E may fail to contain any j for j > k. It is no problem since then 

c(E)  k/i  1 by assumption. 

Proof of theorem 2. Based on lemma 3, we know that   m for  = 

Pig−(Pig(m)). Due to lemma 3 it implies that  is no more Q-informative than m. 

Fixing p = Pig(m), this property holds for all belief functions in IP( p), and   IP( p), by 

construction. Hence   is no more Q-informative than any belief function in IP(p). 

Note that Lemma 3 is stronger than Lemma 1. This is clearly implied it since 

Lemma 1 compares the sum  i=1, …ni to the sum  i=1, …nm( i). However, the proof of 

Lemma 1 is more direct. Moreover, Lemma 2 shows that when comparing mass func-

tions in terms of commonality, one of them being consonant, commonality functions 
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play no particular role. Only contour functions matter. So, the optimality of the possi-

bility measure in IP(p) is really in the sense of the pointwise comparison, in the fuzzy 

set inclusion sense, of the plausibility functions on singletons, i.e., the contour func-

tions. In particular, Lemma 3 implies that the consonant mass function Pig−(p) is 

certainly minimally precise in the sense of the comparison of Bel-Pl intervals, in 

IP(p).  

Let us now turn to the issue of unicity of the least informative mass function in the 

sense of the pointwise comparison of contour functions. The unicity problem can be 

stated as follows: given a possibility distribution  on , whose pignistic transform is 

a probability distribution p = Pig(), is there another (non-consonant) mass function 

m  m such that p = Pig(m) and  = m?  

Theorem 3. The one and only mass function m, such that p = Pig(m) and   m, 

where  = Pig−(p), is the one underlying the possibility distribution . 

Proof. Fix the probability distribution p such that p  p  …  pn and  = Pig−(p) 

such that 1 =     …  n  n+1 = 0. From Lemma 3, the condition  = m must 

be enforced. The mass function m must then satisfy the following constraints:  

E: kEm(E)/card(E) = pk    for k = 1, …, n ; 

E:k  E m(E) = k   for k = 1, …, n,   where k = kpk + j = k+1, …n pj; 

E m(E) = 1. 

Note that since 1 = 1, m(E) = 0 as soon as   E. Now, for k = n, it holds that 

n = npn so that: E:nE m(E) = n(E:nE m(E)/card(E)). It reads  

E:nE m(E)(1 – n/card(E)) = 0, hence m(E) = 0 whenever n  E, card(E) < n.  

So, all such masses m(E) in the pair of equations number k = n are zero except 

m( ) = npn.  

Suppose all masses m(E) = 0 whenever  j  E, card(E) < j in the pairs of equa-

tions j = k + 1,  n, except m() = npn, and m({ 1, …  j}) = j(pj – pj+1). Consider 

the pair of equations number k. It comes:  

E: kE m(E) = kE: kE m(E)/card(E) + j = k+1, …n E: jE m(E)/card(E). 

Subtracting the right-hand side from the left-hand side, consider the coefficients of 

the remaining focal sets: If  j  E and j > k, then E = { 1, …  j}, the coefficient of 

m(E) is 1 – (k/j + (j − k)/j) = 0. If E = { 1, …,  k}, the coefficient is 1 – k/k = 0. If 

E  { 1, …,  k}, the coefficient is 1 – k/card(E)  0. Hence m(E) = 0. Hence the 

mass m({ 1, …  k}) can be completely determined as the unique solution to the 

equation: 



A definition of subjective possibility 

 

19 

j=k, …n m({ 1,   j}) = kpk + j=k+1, …n pj 

since all m({ 1, …  j}), for j > k are determined in the previous steps. Overall only 

subsets of the form E = { 1, …  j}, k = 1, …, n may receive positive mass if the 

mass function has pignistic transform p and contour function  = Pig–1(p). Hence, 

m is consonant, and because there is only one consonant mass function in IP(p), it 

precisely yields the one underlying Pig–1(p). 

Putting together Theorems 2 and 3, the minimally Q-informative mass function 

with pignistic probability p exists, is unique and is consonant. It is actually the mass 

function having the least specific (i.e., pointwisely maximal in  ) contour function, 

hence also least precise in the sense of the comparison of Bel-Pl intervals restricted to 

singletons. This suggests that most of the time, a unique least precise non-consonant 

mass function in IP( p) in the sense of the comparison of Bel-Pl intervals for all events 

will not exist. Indeed if m  IP( p) is a least precise mass function different from the 

one inducing  = Pig–1( p), then ()  m(), for some    , due to the unicity 

result in Theorem 3. Since m is among minimally precise ones, it must also hold that 

Pl(A) >  (A) for some non-singleton event A. So m and m are not comparable. That 

this non-unicity situation does occur can be checked from Example 1. 

Example 1 (continued). Assume   = . So, m( 1  ) = m(   ) =  The 

pignistic probability p induced by m is clearly: p( ) = 1/2, p( 2) = , p( 3) = 1/4; 

 = Pig–1(p) is ( 1) = 1, ( 2) = , ( 3) = 3/4. The contour function of m is 

m( 1) = 1, m( 2) = , m( 3) = 1/2. It is more specific than Pig–1(p) as expected. 

Note that Pl({ 1  2) =  while ({ 1  3) =   Hence m and Pig–1( p) are not 

comparable in the sense of the precision ordering; they are both minimally precise in 

IP( p). 

5. Conclusion 

The main result of this paper is that, on finite sets, the least committed mass func-

tion among the ones which share the same pignistic transform, is unique and conso-

nant, that is, the corresponding plausibility function is a possibility function. This 

possibility function is the unique one in the set of plausibility functions having this 

prescribed pignistic probability, because the pignistic transformation is a bijection 

between possibilities and probabilities. So, this possibility function corresponds to the 

least committed mass function whose transform is equal to the subjective probability 

supplied by an agent. This suggests a new justification to a probability-possibility 

transform previously suggested by two of the authors. 
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This result provides an operational basis for defining subjective possibility de-

grees, hence the membership function of (discrete) fuzzy numbers. It tentatively ad-

dresses objections raised by Bayesian subjectivists against the use of fuzzy numbers 

and numerical possibility theory in decision-making and uncertainty modelling tasks. 

Interestingly, our approach refutes neither the Bayesian operational setting (unlike 

Walley (1999) and De Cooman and Aeyels (1999)) nor the use of standard expected 

utility for decisions (since the pignistic probability can be used for making decisions). 

It only questions the interpretation of betting rates as full-fledged degrees of belief. 

Bayesians may then claim that our approach makes no contribution, since the underly-

ing possibility distribution is not used for selecting decisions. However the proposed 

subjective possibility approach, just like the Transferable Belief Model, does differ 

from the Bayesian approach in a dynamic environment.  In our non-classical setting, when 

an event is known to have occurred, the revision of information takes place by modifying 

the possibility distribution underlying the pignistic probability, not this probability directly. 

This means that the new probability distribution obtained from the agent is no longer as-

sumed to coincide with the result of conditioning the original pignistic probability, but that 

the agent would bet again based on a different frame supporting the revised knowledge 

(see, e.g. (Dubois et al. 1996), (Smets 2002), on this matter).  

In order to fully bridge the gap between the above results and the probabilistic in-

terpretations of fuzzy numbers after Chanas and Nowakowski (1988), the next step is 

to extend the result of this paper to the infinite case, using continuous belief functions 

whose focal sets are closed intervals. This is a topic for further research. 
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Definicja subiektywnej możliwości 

W pracy proponuje się subiektywne spojrzenie na teorię możliwości, polegające na założeniu, że kie-

dy konstruuje się pewien rozkład prawdopodobieństwa, jest on faktycznie indukowany przez pewną 

funkcję ufności (belief function) reprezentującą rzeczywisty stan wiedzy. Zakłada się również, że przej-

ście od pewnej funkcji ufności do rozkładu prawdopodobieństwa jest realizowane za pomocą transforma-

cji (pignistic transformation), znanej jako wartość Shapleya. Rozważa się problem znalezienia odpo-

wiedniej funkcji ufności zgodnej z danym rozkładem prawdopodobieństwa. Dowodzi się, że funkcja ta 

jest jednoznacznie określona i zgodna. Można ją zatem reprezentować za pomocą rozkładu możliwości. 

Rozkład ten jest subiektywny i jednoznaczny. Otrzymane w pracy wyniki pozwalają na definiowanie 

subiektywnych stopni możliwości, a co za tym idzie – funkcji przynależności liczby rozmytej. 

 


