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The main aim of this paper is to show how fuzzy sets and systems can be used to produce  optimi-

zation algorithms able of being applied in a variety of practical situations. Fuzzy sets-based heuristics 

for Linear Programming problems are considered. To show the practical realisations of the approach 

proposed a metaheuristic proving the efficiency of using fuzzy rules as termination criteria is shown.  

Then the Travelling Salesman Problem and the Knapsack Problem are assumed and solved by means 

of this metaheuristic giving rise in this way to new heuristic algorithms solving these problems. F inal-

ly, as an illustration, some practical results showing the outstanding potential of these algorithms are 

shown. 

1. Introduction 

It is assumed that generally on the first level, the principal constituents of Soft 

Computing are the Approximate Reasoning and the Functional Approxima-

tion/Randomised Search, and then on the second level Probabilistic Models, Fuzzy 

Sets and Systems, Evolutionary Algorithms (EA) and Neural Networks appear. On 

the one hand, it is evident that since the famous “Fuzzy Boom” of the 1990’s, Fuzzy 

Sets and Systems have settled permanently in all the areas of R+D+I. Their applica-

tions can be found in all the fields of our daily life, and they are a subject of study 

on different educational levels. On the other hand, there is no doubt that thanks to 
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the technological potential that we have nowadays, we tackle witness discoveries 

that were unpredictable only a decade ago. 

In particular, computers perform efficiently tasks that seemed to be very laborious, 

it not impossible, only a short time ago, allowing us to tackle problems of great com-

plexity, both in comprehension as well as in dimension, in a great variety of fields. 

Special attention should be paid to the optimization field [1]–[3], [6]. In those fields 

the EA’s appear to be much valuable methods for finding solutions to specific prob-

lems. However, EA’s are just one more class of heuristics [4], including Taboo 

Search, Simulated Annealing, Variable Neighbourhood Search (VNS), Hill Climbing, 

Memetic Algorithms and many others. All of them usually give solutions that are not 

the very best, but their quality is good enough to satisfy the decision maker. Conse-

quently, among the constituents of Soft Computing, instead of EA’s, that might repre-

sent only part of the methods of search being used, there should appear Heuristic Al-

gorithms. 

But, in spite of the huge success achieved by the Fuzzy Sets and Systems, the im-

portant progress produced by the heuristics in a variety of practical ways, and close 

relationship between both methodologies, if we do not consider the super-area of the 

Genetic Algorithms, or more generally of the EA, not much work has been done in the 

development of Fuzzy Sets-based Heuristics [14]–[16].  

As an attempt to bridge this gap, the aim of this contribution is to show how 

fuzzy sets-based methodologies can be used as and aid in solving optimisation prob-

lems, thus giving rise to the so-called Fuzzy Sets-based Heuristics. In this way, first 

we will focus on the possibility of using fuzzy rules as termination criteria in the 

algorithms. Then the application of this methodology to two classical and very well 

known problems, the Travelling Salesman Problem and the Knapsack Problem, will 

be shown and described. Finally, some experimental results will also be analyzed. 

2. Using fuzzy rules for terminating algorithms  

The key point in this section is that Fuzzy Linear Programming (FLP) methodol-

ogies may help to find solutions to problems in which finding an optimum solution 

is not easy. As is well known, there are a lot of NP-hard problems (Knapsack, Trav-

elling Salesman, etc.) which cannot effectively be solved in all cases, but which are 

of the utmost importance in a variety of real applications. In these problems, the 

decision-maker must usually accept approximate solutions instead of optimum ones. 

At this point the aim here is to show how the FLP can help classical MP models and 

techniques by providing approximate (fuzzy) solutions that may be used by the de-

cision-maker to obtain quickly a solution that would be good enough for these prob-
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lems.  

Let us justify this fact. An algorithm for solving a general classical optimisation 

problem can be viewed as an iterative process that produces a sequence of points ac-

cording to a prescribed set of instructions, together with a termination criterion. Usual-

ly, we are interested in algorithms that generate a sequence x1, x2, ..., xN that converges 

to an overall, optimum solution. But in many cases, however, and because of the diffi-

culties appearing in the problem, we may have to be satisfied with less favourable 

solutions. Then the iterative procedure may stop at either 1) if a point belonging to a 

prefixed set (the solution set) is reached, or 2) if some prefixed condition for satisfac-

tion is verified. 

But, the conditions for satisfaction are not to be meant as universal ones. In fact 

they depend on several factors such as the decision-maker, the features of the problem, 

the nature of the information available, etc. In any case, assuming that a solution set is 

prefixed, the algorithm will stop if a point in that solution set is reached. Frequently, 

however, the convergence to a point in the solution set is not easy because, for exam-

ple, of the existence of local optimum points, and hence we must redefine some rules 

for terminating the iterative procedure. 

Roughly speaking, the possible criteria to be taken into account for terminating 

the algorithms are nothing but control rules. Thus these rules could be associated 

with the above two points: the solution set and the criteria for terminating the algo-

rithm. As is clear, fuzziness can be introduced in both points, without assuming it as 

inherent in the problem, but considering it to be an aid for obtaining, in a more ef-

fective way, some solution for satisfaction the decision-maker’s wishes. This is 

meant so that the decision-maker might be more comfortable when obtaining a solu-

tion expressed in terms of satisfaction instead of optimisation, as is the case when 

fuzzy control rules are applied to the control processes. Therefore, and in the partic-

ular case of optimisation problems [5], [17]–[19], it makes sense to consider fuzzi-

ness: 

a) In the Solution Set, i.e., there is a membership function giving the degree with 

which a point belongs to that set, and  

b) On the conditions for satisfaction, and hence Fuzzy Control rules on the criteria 

for terminating the algorithm.  

In the particular case of LP problems, if a conventional problem is assumed 

min {cx/Ax = d;   x  0} 

the Simplex Algorithm, with the usual denotation, can be summarised as follows: 

1) Find an initial extreme point x with basis B, 

2) Let x be an extreme point with basis B, and let R be the matrix corresponding to 

the nonbasic variables. Compute cBB–1R – cR 

If this vector is non positive then stop, x is an optimal extreme point. 

Else select the most positive component cBB–1aj–cj and compute yj = B–1aj : 
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If yj = B–1aj is less than or equal to 0 Then stop. Objective unbounded.  

If yj = B–1aj is neither less than nor equal to 0 Then go to step 3 

3) Find the new extreme point by changing the current basis. Repeat step 1. 

Therefore, as may be seen, in the Simplex Algorithm control rules appear mainly in 

the second step as 

– The non positivity of the vector cBB–1R – cR could be meant in a soft sense, 

– The positivity of the component cBB–1aj – cj could be measured according to some 

membership function, and 

– The accomplishment of yj = B–1aj  0, if this is viewed as a constraint, could be 

fuzzified. 

If the first possibility is considered, a new second step can be formulated,  

2) Let x be an extreme point with basis B. Compute cBB–1R – cR. If 

j = 1, ..., n, cByj – cj <f 0, cj  cR 

Then stop. 

Thus this condition is stated as a fuzzy constraint, in which the decision-maker 

can accept violations in the accomplishment of the control rules, cByj – cj < 0, 

to obtain a near, and therefore approximate, optimal solution instead of a full opti-

mal one. 

3. Fuzzy control rules in the Travelling Salesman Problem 

In this section, the above fuzzy rules, meant as termination criteria in optimization 

algorithms, will be illustrated by means of a classical and well known problem: the 

Travelling Salesman Problem (TSP). TSP finds application in a variety of situations: 

postal routes, tightening the nuts on some piece of machinery on assembly lines, etc. 

In short, TSP is addressed as follows: Let G be a directed graph in which the nodes 

represent cities and each edge is assigned a positive cost (the distance between every 

two cities). If a route of G is defined as a directed cycle that includes every vertex in G, 

and the cost of a route is the sum of the cost of the edges on the route, the TSP is to 

find a route of minimum cost. 

We denote by i = 1 the first city of the route and by 2, 3, ..., n the other cities, dij is 

the distance between the city i and the city j, the value of the variable xij is 1 if j is the 

next city in the route to city i and 0 otherwise. If N = {1, 2, ..., n}, the mathematical 

formulation of the TSP is: 
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In order to introduce fuzzy termination criteria in the exact algorithms of TSP, we 

consider that the value of a TSP optimal solution is not a crisp unknown value, but 

a vague value, because in a large dimension TSP, for which the exact algorithms 

known need a lot of time to obtain an optimal solution, the decision maker can be 

comfortable with having an almost optimal solution instead of the very optimal one. In 

such a situation the optimal value can be seen as a fuzzy set on [L0, U0] defined by a 

membership function as: 















=

0

00

0

if0

if)(

if1

)(

Uz

UzLzf

Lz

z  

where f(z)  [0, 1] z  [L0, U0], is a non-increasing continuous function, L0 is the 

lower bound and U0 the upper bound of the optimal value of the TSP which shall be 

determined a priori as will be shown. As usual, this membership function shows that 

if the value z of a TSP route is greater than U0, then it is not allowed by the decision 

maker. A lower value to L0 can be a good solution and values between L0 and U0 are 

admissible, but the level of admission will be increasing when z decreases. Obviously, 

the highest level of admission is obtained when z is equal to L0. 

If the decision maker accepts a non-optimal solution with a membership degree not 

lower than  (0 <  <1), the termination criterion is:  

 µ(z)     or   z  f –1() (1) 

The values of L0, U0 and the function f must be the correct ones in order to pro-

vide the expected results by the decision maker. Unsuitable values of L0, U0 can 

produce solutions with great errors. Equally, an incorrect function f can cancel out 

the flexibility. From [13], [17]–[19] it follows that in such situations a good option 

is to use a concave function in the definition of the membership function, that is, the 

function  
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for which the bounds L0 and U0 can be computed by the existing suitable and efficient 

algorithms. 

In order to illustrate the use of fuzzy termination criteria in the TSP, the well 

known algorithm by Little et al. [8], denoted here as LMSK algorithm for short, which 

was specially designed for solving TSP, has been considered. 

3.1. LMSK algorithm 

This is a branch and bound algorithm that uses relaxation of TSP as a matching 

problem denoted by PA (TSP). The algorithm starts by solving the PA (TSP) by the 

Hungarian Method; if the solution obtained does not possess sub-routes, then it is an 

optimal solution of the TSP. Else the algorithm proceeds to branch. In each iteration, 

one chooses the most recent sub-problem TSPk from among the unsolved ones. If the 

optimal value is lower than the best current value, then it is saved as the best current 

value, or alternatively one the branches according to this problem has sub-routes or 

has not. If the optimal value is equal to or greater than the best current value, then one 

rejects the sub-problem and starts another iteration. The rule for branching consists in 

choosing a variable xij and obtaining two sub-problems by assigning 0 and 1 values to 

the selected variable. The process terminates when there is not a single sub-problem 

left unsolved. 

In a TSPk (node k) sub-problem, as a consequence of the above branching, there 

are variables xij with fixed values (0 or 1). In graph terms, there are (i, j) edges includ-

ed or not in the route. We denote by I the included edge set and E the excluded edge 

set. Then, TSPk can be described as: 
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furthermore dij are the coefficients of the matrix of reduced distance of previous 

node. 

This sub-problem is solved by using the Hungarian Method. If the solution ob-

tained has sub-routes one proceeds to branch. A rule for branching is to choose a vari-

able xrs where r  S and s  T, and to make two nodes with value 1 or 0 assigned to 

each. Little et al. [8] suggest to select a variable xrs with value 0 if this variable has the 

maximal potential of increasing in the objective function of the sub-problem. Thus, let 

  TjSidij  ,  

be the reduced cost of the optimum solution of the sub-problem. Then, for each edge 

(i, j), i  S, j  T with reduced cost 0, we compute: 

   }{/min}{/min iShdjThdp hjikij −+−=  

which is the minimum amount to increase the optimum value of the assignation to the 

sub-problem, if the chosen variable is fixed to 0. Therefore, we can choose xrs such 

that: 

  0,,/max == ijijrs dTjSipp   (3) 

when the variable of branching xrs is chosen, all the new nodes can be obtained mak-

ing xrs =1 and xrs =0. In the first new node, I has the edge (r, s) as the new element, 

and in the second new node, E has the edge (r, s) as the new element. 

3.2. Steps of LMSK algorithm 

Step 1: [Starting] Let U =  (best bound and real value) and L = {TSP} (subproblem 

list). 

Step 2: [Selecting a sub-problem] If L =  then one terminates the process, because 

the route associated to U is an optimal one (if U =  , the TSP has not solu-

tion). 

If L  , one chooses the more recent sub-problem TSPi, and one removes it 

from the list L. Go to step 3. 

Step 3: [Upper bound determination] Solve PA(TSPi) by means of the Hungarian 

Method. Let Zi be the obtained value. 

If Zi  U, go to step 2. 

If Zi < U and the solution is a route for TSP (there are not subroutes) then 

make U = Zi. 

If Zi < U and the solution is not a route for TSP (there are subroutes) go to step 

4. 
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Step 4: [Branching] Choose xrs according to (3) and generate two news sub-problems 

TSPi1 and TSPi2 by fixing xrs = 0 and xrs = 1. Let L = L  {TSPi1, TSPi2}. 

Go to step 2. 

Remark: Note that the termination criterion of this algorithm is L  . 

3.3. Fuzzy termination criteria in the LMSK algorithm 

To introduce a fuzzy termination criterion in the LMSK algorithm, we make 

a change at the starting step in order to determine the bounds L0 and U0. L0 is comput-

ed by using the method proposed in [12], and the upper bound U0 is computed by means 

of the process described in [10]. In the same starting step, the decision maker will choose 

and fix  (the lowest level of admission). Finally, at step 2 one must include the fuzzy 

termination condition (1). Therefore the following new algorithm is obtained: 

Step 1: [Starting] Let U =  (best bound and real value) and L = {TSP} (subproblem 

list). Solve by means of the Hungarian Method PA(TSP). If optimum match-

ing is a route of TSP go to step 2. Else, go to 1’. 

Step 1’: Find L0 and U0, then make U = U0 (best real bound) and go to step 1’’; 

Step 1’’: Fix  (0 <   1). If 0 <  < 1 let z0 = f–1() (bound for the admissible solu-

tion, where f is as in (2)). If L   go to step 2. Else, go to step 4. 

If  = 1 (the decision maker does not want to improve an admissible solution), 

let L =  and go to step 2. 

Step 2: [Selecting a sub-problem] If L =  or U  z0 stop the process, as the associated 

route with U is admissible; if L   go to step 1’’. Otherwise stop. 

If L   and U > z0 , select the more recent problem TSPi , remove it from the 

list L and go to step 3. 

Step 3: [Upper bound determination] Solve PA(TSPi) by means of the Hungarian 

Method. Let Zi be the obtained value. 

If Zi  U, go to step 2. 

If Zi < U and the solution is a route for TSP (there are not subroutes) then let 

U = Zi. 

If Zi < U and the solution is not a route for TSP (there are subroutes) go to step 4. 

Step 4: [Branching] Choose xrs according to (3) and generate two news sub-problems 

TSPi1 and TSPi2 by fixing xrs = 0 and xrs = 1. Take L = L  {TSPi1, TSPi2}. 

Go to step 2. 
The introduction of the fuzzy termination criterion on the algorithm has made it 

more flexible. Now, the decision maker can control the iterations because at step 1’’ 

he can introduce small values for  and to increase them if he wants to improve the 

admissible solution. Consequently, the decision maker will take into account the time 

used for obtaining admissible solutions. 
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For the sake of illustration, let us finally consider the following TSP of 10 cities, 

with a distance matrix given by: 
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We consider the diagonal elements of the matrix and the distances of excluded 

edges in the iterations with a value M =10 x (max dij). Then, dii = M and dij = M if the 

edge (i, j) is excluded from the possible route. Then solving the problem with the ex-

act algorithm LMSK, one obtains the optimal route “1→ 2→ 9→ 6→ 5→ 10→ 4 

→8→ 7→ 3→ 1” with a total distance z = 218, after solving 15 sub-problems (origi-

nal problem included). 

On the other hand when using the LMSK algorithm with a fuzzy termination crite-

rion, a function f as (2), n = 2, and bounds L0 = 208 and U0 = 308 (at the starting step 

1’), the admissible solutions for the different values of   are shown in table 1. 

Table 1 

Admissible solutions for the example (LMSK algorithm and fuzzy termination criteria) 

 z0 = f –1() Admissible route Admissible value Sub-problems solved (It) 

0.5 

0.8 

0.94 

283 

244 

219.64 

1-7-3-10-5-2-9-8-4-6-1 

1-8-7-4-3-19-5-2-9-6-1 

1-2-9-6-5-10-4-8-7-3-1 

258 

221 

218 

8 

10 

14 

One can observe that for  = 0.8, an admissible solution is obtained by solving on-

ly 66% of all the sub-problems that the classical algorithm solves. However, the ad-

missible value obtained is very close to the optimum. It is then evident that the saving 
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in time is upper in comparison with the difference between the admissible value and 

the optimum value. Furthermore, for  = 0.94 one obtains an admissible solution 

which is the exact one, with less iterations being performed than in the original classi-

cal algorithm. The greater the number of cities in the TSP, the more evident these ad-

vantages are. 

4. Fuzzy control rules in the Knapsack problem 

Note that from among all a large variety of possible Knapsack Problems (KP) 

which can be addressed, we will focus here on the 0-1 KP, which can be mathemati-

cally formulated by numbering the objects from 1 to n and introducing a vector of 

binary variables xj ( j  J = {1, ..., n}) such that xj = 1 if object j is selected to be intro-

duced in the knapsack, and xj = 0 otherwise. Then, if pj is the benefit, or cost, of select-

ing the object j, wj its size, or weight, and c the capacity of the knapsack, the problem 

will be to select, from among all the binary vectors x verifying the constraint of capac-

ity the one which maximizes (alternatively minimizes if the pj are costs) the objective 

function defined by the benefits, that is, the problem is stated as follows 

 }},1,0{;:max{ Jjxcxwxp jjjJjjjJj    (4) 

In the following it will be assumed that the objects are ordered in such a way that 

one verifies 

 .
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w

p
  

w

p

n

n

2

2

1
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and the objective function of the KP, that is, the objective function in (4) will be de-

noted by z(KP) 

4.1. Dantzig’s upper bound 

An upper bound U for (4) is such that z(KP)  U. There exist several algorithms 

for determining upper bounds [9]. For the sake of easiness here we will use Dantzig’s 

upper bound, which can be obtained from the linear programming relaxation of (4), 

C(KP), that is, from the continuous KP derived from (4) when xj  [0, 1], instead of 

xj  0, 1, j  J. When the objects are ordered according to (5), they are consecutive-

ly inserted in the knapsack until the first object, s, which does not fit it is found. This 

object is called “critical object” and it may be defined as 



Solving NP-hard problems... 

 

177 

 












= 
=

cwjs

j

i

i

1

:min . (6) 

Dantzig’s bound is computed from this critical object as 
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where, as usual, x denotes the largest integer not greater than x. 

4.2. Exact algorithms 

As was said, there exist several algorithms solving the KP. In [9], a good revision 

of them can be found. Apart from the well known greedy algorithms, the most relevant 

methods solving the KP are those based upon either Branch and Bound or Dynamic 

Programming approach. This is the main reason why in this paper, for illustrating the 

use of the proposed fuzzy termination criteria, we have focused on 

a) Horowitz–Sahni algorithm, Branch and Bound based, and b) another Dynamic Pro-

gramming based algorithm, which in the following will be briefly described. 

4.2.1. Horowitz-Sahni algorithm 

This is an algorithm which effectively improves the first Branch and Bound ap-

proach for the exact solution of KP, formerly presented by P. Kolesar in the 1960’s, 

and basically follows a depth-first methodology by means of which, provided that the 

objects are sorted as in (5):  

1) by the branching scheme at each node, selects the not-yet-fixed object j such 

that it has the maximum benefit per unit weight. Then creates two descendent nodes 

by fixing xj equal to 1 and 0, respectively;  

2) the search follows then from the node associated with the insertion of the object 

j (xj = 1), which basically is a greedy strategy.  

The algorithm progresses by doing forward moves and backtracking ones. By the 

first moves the largest set of new consecutive objects are inserted in the current solu-

tion. By means of the second moves it is possible to delete the last inserted object of 

the current solution. Each time in which a forward move is completed, the upper 

bound is computed and compared with the best value obtained until that moment. The 

terminating criterion here is that the algorithm stops when no further backtracking can 

be performed.  
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4.2.2. Elimination of states algorithm 

From the Dynamic Programming point of view the natural decomposition of a KP 

will be obtained by considering the sub-problems KP(m, cI), with m (1  m  n) ob-

jects and a capacity cI, 0  cI  c. Let fm(cI) the optimal solution value of KP(m, cI), 
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To solve the KP by Dynamic Programming this technique considers n stages (the 

number of possible objects to be selected) and computes, at each stage, the values 

fm(cI) of (9) by using the classical way of recursion 
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Feasible solutions associated with fm(cI) values are called states, and the optimal 

solution of the problem is therefore the state associated with fn(c). The number of 

states in each stage, as pointed out in [7], may be reduced by eliminating those states 

which will not modify at any extent the determination of optimal states. These states 

are called dominated states. The subsequent algorithm computes and reserves in each 

step the nondominated states. These states are used as input values in order to find the 

states of the next stage. Although, as it is patent, the termination criterion of this algo-

rithm is not specified in a concrete way, the process will end when the state fn(c) is 

reached. 

5. Fuzzy termination criteria for KP solution algorithms 

As in many other NP-hard problems, KP often accept as optimal solutions good solu-

tions, which, though not being the best ones, are good enough in some sense. To find this 

kind of good enough solutions, using heuristic algorithms is much appropriated. The 

alternative way proposed here however, assumes softening the exact algorithms at hand, 

and solving the particular problem considered by introducing fuzzy termination criteria, 

which finally provide a new class of heuristic rule-based algorithms. 

To illustrate this approach let us consider a KP formulated as in (4), and let us as-

sume an appropriate dimension of it in order to guarantee that it will not be possible to 
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find its optimal solution in a reasonable time, that is, we suppose that the number of 

objects is extremely large. In this context two facts are patent:  

a) Not any solution can be acceptable.  

b) The decision-maker, the problem-solver will always have an imprecise idea (meant 

as a vague notion) of the range in which he will be able to accept a final value. This im-

precise nature is very suitable to be represented by means of a fuzzy set, instead of an 

interval, as often the decision-maker is very comfortable in expressing his wishes on the 

values to be accepted if he can also express their corresponding satisfaction degrees, 

which in essence means that comfortability on the final values to be accepted is a matter 

of degree. 

Coherently let us assume that the fuzzy set representing the proposed decision-

maker’s satisfaction on the final value to be accepted as a solution is given by means 

of the following membership function 

 









=

.)(

,0
)(

00

0

UzLtf

Lz
z  (11) 

where f(.) is a non decreasing and continuous function, [0, 1] valued and L0 and U0 are 

the lower and upper bounds, respectively, for the optimal value z* corresponding to 

the optimal solution, that is, L0  z*  U0. 

In general, these bounds should be provided by the decision-maker, as he is in 

charge of defining this acceptability concept. But when the problem has a very high 

dimensionality, as we suppose here, we need to assume the decision-maker’s impossi-

bility to make these data precise. In such a case, very good substitutes of the former 

vales L0 and U0 can be the optimal solution provided by any greedy algorithm applied 

to (4), for L0, and Dantzig’s bound for U0. Using these two values in (11), the defini-

tion of the membership function may be obtained in a straightforward manner. 

Consequently, under these assumptions on bounds and membership function, if the 

decision-maker is to accept a feasible solution with a value z which has a membership 

degree greater than or equal to   (0, 1), the stop criterion is: 

 f (z)     or   z  f –1() (12) 

When this termination criterion is introduced in the algorithms considered here, 

they are flexibled in such a way that the computing process can be stopped when con-

dition (12) is satisfied. 

Provided that the acceptation degree  has been fixed, there are two possibilities as 

regards the optimal value z*: 

a) It is greater than f –1(). Then we can obtain an acceptable solution, 

b) It is lower than or equal to f –1(). In this case the termination criterion makes no 

sense because the process will never end. This is the reason why the exact termina-

tion criteria must be maintained, giving thus a subsidiary theoretic character to the 
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fuzzy termination criterion. 

One way to reduce the possibility of situations like b) above is to use, as member-

ship function (11), a concave function, as in such a case  

h–1() < f –1() 

for any function h concave. 

A possible concave function which can be used in the definition of the membership 

function (11) may be the following: 

 n
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with n > 1. Then (12) becomes: 

 
nLUUz )( 000 −+ . (14) 

To clarify the process, and as an illustration, in the following we will modify the 

termination criteria of the two algorithms presented in the above section 

5.1. New termination criterion for the Horowitz–Sahni algorithm 

In the Horowitz–Sahni algorithm, the stopping criterion is stated as to stop the pro-

cess when there are not any backtracking possibilities. When the algorithm is softened, 

besides of maintaining this criterion, the condition (12) is also introduced. Thus, with 

this additional termination criterion the algorithm will analyze each time that a new 

solution is obtained whether or not the corresponding value satisfies condition (12). In 

the case of a positive response, the process stops providing the corresponding accepta-

ble solution. 

5.2. New termination criterion for the elimination states algorithm 

As was said, in this algorithm the termination criterion assumes that the process 

stops when the state with the value fn(c) is obtained. According to this criterion the 

process will be active up to the last state in the last step, although the exact solution is 

obtained in a previous step or in a state before. By introducing the fuzzy termination 

criterion in each step and state, it will be analyzed whether an acceptable value has or 

has not been obtained. In the case of positive response, the process will be stopped. It 

may appear evident that under this criterion there is not any necessity of solving all the 
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steps and all the states. 

5.3. Experimental results as conclusions 

In this section, there will be presented the results of the computational experiments 

carried out with KP of 1.000, 5.000, 10.000 and 50.000 objects, whose values and 

weights, in all the cases in the interval [1, 1000], have been randomly generated. 

Moreover, as usual, in all the problems the capacity of the knapsack is the half-sum of 

the weights. 

Noted that, on the one hand, for each of the algorithms considered in the previous 

section, with fuzzy termination criteria, a membership degree of  = 0.5,  = 0.8 and 

 = 1, is successively assumed, being evident that the last case ( = 1) corresponds 

exactly to the classical algorithm with non fuzzy termination criterion. It is also im-

portant to remember that in the tables of results below, the error and the execution time 

are given for each of the above algorithms in section 2, and the error is computed as 

Error = 100 x [(Dantzig’s Bound) – (Obtained Solution)]/ (Dantzig’s Bound) 

On the other hand, in order to compare the results obtained, and provided the ap-

proximate nature of the algorithms under analysis, we consider Sahni’s Algorithm 

[11], which is a frequently used and therefore known algorithm that runs according to 

the following greedy scheme: If from among a set of k items M have been already 

introduced into the knapsack, the algorithm tries to fill up the remaining capacity. To 

do this, first all the possible sets M consisting of k elements to be introduced in the 

knapsack are generated. Then the remaining capacity of the knapsack is filled up. For 

obvious reasons this algorithm is often used for k = 1, 2, 3. 

Let us finally note that in the fuzzy termination criteria of the two algorithms re-

vised in Section 4, there has been used the condition 

z  L0 +(U0 – L0).
4 

that is, the fuzzy criteria are defined by means of the membership function (11) with 

the function f being given by (13) and n = 4; L0 is the corresponding solution obtained 

from the basic greedy algorithm, and U0 is Dantzig’s bound. 

Table 2 

Results from the Horowitz–Sahni Algorithm with fuzzy termination criterion 

 

N 

Horowitz–Sahni Algorithm Sahni Algorithm (approximate) 

Exact  = 0.5  = 0.8 K = 2 K =3 

error time Error time error time error time error time 
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 1.000 

 5.000 

10.000 

50.000 

.001928 

.000098 

.00002 

.00000 

.044 

1.462 

3.72 

21.8380 

.00517 

.000464 

.000108 

.000021 

.0 

.0 

.01 

.096 

.003959 

.000316 

.000059 

.000013 

.0 

.022 

.012 

.136 

.0032556 

.000237 

.000298 

.000003 

.11 

2.538 

8.802 

212.476 

.002471 

.000168 

.000272 

.0 

.23 

4.58 

13.97 

257.764 

Table 2 shows the results from the experiments after using the Horowitz–Sahni 

Algorithm with the explained fuzzy termination criteria. In this table, the results that 

the approximate algorithm of Sahni provides are also shown. 

As can be seen, the Horowitz–Sahni algorithm with a fuzzy termination criterion 

provides results with small errors, and with very short times with respect to both the 

exact and approximate solutions that Sahni’s algorithm reports. This last advantage is 

much more significant when the number of objects increases.  

On the other hand, Table 3 shows other results from the experiments after using 

the above Elimination of States algorithm with a fuzzy termination criterion. This 

algorithm is shown to provide a better approximation (smaller error) with shorter 

times than Sahni’s algorithm. 

Table 3 

Results from the Elimination of States Algorithm with fuzzy termination criterion 

 

N 

Elimination of States Algorithm Sahni Algorithm (approximate) 

exact  = 0.5  = 0.8 K = 2 K = 3 

error time error time error time error time error time 

 1.000 

 5.000 

10.000 

50.000 

.001928 

.000098 

.00002 

.0 

.24 

3.778 

12.198 

223.944 

.004367 

.000276 

.000069 

.000004 

.19 

3.076 

10.182 

218.350 

.00382 

.000247 

.000029 

.000003 

.236 

3.098 

10.252 

218.376 

.0032556 

.000237 

.000298 

.000003 

.11 

2.538 

8.802 

212.476 

.002471 

.000168 

.000272 

.0 

.23 

4.58 

13.97 

257.764 

Results, as conclusions, given in Table 2 and Table 3 are a proof of the validity of 

the proposed approach.  
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Rozwiązywanie NP-trudnych problemów 

przy użyciu heurystyk opartych na zbiorach rozmytych 

Głównym celem artykułu jest zaprezentowanie, jak zbiory i systemy rozmyte mogą być użyte w al-

gorytmach optymalizacyjnych, stosowanych w praktycznych problemach. Rozpatrywane są, oparte na 

zbiorach rozmytych, heurystyki dla zagadnienia programowania liniowego. Dla zaprezentowania prak-

tycznych realizacji zaproponowanego podejścia przedstawiono metaheurystykę, potwierdzającą efektyw-

ność stosowania rozmytych reguł jako kryterium zakończenia obliczeń. Za pomocą metaheurystyki roz-

wiązano takie zagadnienia, jak problem komiwojażera i zagadnienie plecakowe. Na zakończenie 

przedstawiono wyniki eksperymentów ukazujących nieprzeciętne możliwości proponowanych algoryt-

mów. 

 


