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AND FUZZY GOAL 

In this paper, we consider a vehicle routing and scheduling problem with fuzzy time windows and 

a fuzzy goal. A two-stage method for obtaining the improved optimal solution to the problem under 

consideration is presented. This method uses the constraint programming as an effective tool for solving 

the problem.  

1. Introduction 

This paper deals with the following problem: For given set of customers some 

goods are delivered by vehicles from a point further called depot. The supply of goods 

to every customer is made by a fleet of K vehicles. Every vehicle takes the goods from 

the depot, next delivers the goods to selected customers and returns back to the depot, 

which constitutes a route. The routes cannot violate the capacity of the vehicles and 

exactly one vehicles and exactly one vehicle can realize the supply of goods to the 

customer. Some preferences concerning the time of delivery for each customer are 

given. These preferences, in contrast to Vehicle Routing with Time Windows [2], [6], 

[7], are modeled by trapezoidal fuzzy numbers. 

The goal which, in the classical problem, is to minimize the total working time of 

the vehicles is also represented by a trapezoidal fuzzy number. Now, the problem con-

sists in assigning a route and finding the time schedule for each vehicle while the least 

of the degrees of satisfaction of the time windows and the goal constraint are maximal. 

A mixed integer linear programming model of the problem and heuristic methods of 
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solution are given in [5]. The optimal solution called a max–min optimal solution has 

a drawback: while determining the optimal degree of satisfaction it does not try to 

obtain as high as possible a degree of satisfaction of other time window constraints. 

This frequently causes that for the max-min optimal solution the degrees of the satis-

faction of temporal and goal constraints are fixed at a low level. In this paper, using 

the constraint programming we present, a method leading to an improved solution. 

The degree of satisfaction of the improved solution is the same as that of the max–min 

optimal solution while the degree of satisfaction of all the constraints (for the time 

windows or the goal) is as high as possible. The solution obtained with the method 

presented is a discrimin-optimal solution [1]. 

2. Problem formulation 

To define the problem under consideration the following data characterizing the 

customers and vehicles are introduced: 

• n number of customers, 

• N = {1, 2, …, n} the set of customers, 

• N0 = {0}  N index 0 indicates the depot, 

• si service time at point i  N, 

• qi demand of customer i  N, 

• iTW  trapezoidal fuzzy number (ai, ei, li, bi) characterizing the preferences of cus-

tomer i about the service start time, 

• K number of available vehicles, 

• M = {1, 2, …, K} the set of vehicles, 

• Qk capacity of the vehicle k  M, 

• tij travel time from customer i to customer j. 

Decision maker preferences concerning the goal (minimizing the total working 

time of the vehicle) are given by the fuzzy number: 

• G
~

 trapezoidal fuzzy number (0, 0, g1, g2). 

Next, we define the notions of the route of vehicle, the schedule of the route, the 

solution of the problem and formulate the criterion. 

A tour is represented by list of indices of the customer who are served on this tour. 

The list starts and ends with number 0, which represents the depot. An example tour is 

given in Figure 1. 

The schedule t = (S = t0, t1, …, tm, tm+1 = F) of the route (0, 1, 2, …, m, 0) defines 

the sequence of service start times of successive customers, where S = t0, tm+1 = F indi-

cate, respectively, the start time and finish time of the route. The numbers ti fulfil the 

following constraints: 
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We assume that the time window of the depot [a0, b0] is crisp. For the route (0, 1, 

2, 0) three example schedules are given in Figure 2. The minimal degree of satisfac-

tion of time windows of customers 1 and 2 for the first schedule (S1, t1, t2, F1) is equal 

 

 

Fig. 1. The route of vehicle serving customers 3, 1, 5 

 

to 0.25 = min {1, 0.25}, for the second schedule ),,,( 211 FttS   it is equal to 0.5 = min 

{0.5, 0.5} and for the third one ),,,( 211 FttS   it is equal to 0.5 = min {0.5, 0.5}. The 

last schedule ),,,( 211 FttS   has the same degree of satisfaction of the time windows as 

the second one but has a shorter total realization time .1111 SFSF −−  

 

Fig. 2. Schedules of the route [0, 1, 2, 0] 

Let S be the set of tours and P(S) the set of customers which are served on tours 

from set S (see Fig. 3). 
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Fig. 3. The set of two tours 

Now, we proceed to formulate the criterion. Let T(S) be the set of all possible 

schedules for tours from set S. For the schedule t  T(S), ti denotes the start time of 

serving customer i and TOTAL(t) is the total time of realization of all tours in S. We 

will denote by SATG
~ (t) the maximal degree of satisfaction of all the temporal con-

straints, which depends on fuzzy time windows iWT
~~

, for every customer i  P(S) and 

on the satisfaction of the goal G
~

 by the value of TOTAL(t): 

SAT
GiWTSPiSt

G
tS

i

~~~
)()(

~ ),(min{minsup)( 


=
T

(TOTAL(t))}. 

Now, we can state the problem as follows: 

Find the set S and K tours and schedules such that P(S) = N (every customer is 

served by exactly one vehicle) and degree of satisfaction SATG
~ (S) is maximal. 

The mixed integer programming model [5] is as follows. We assume further that 

i, j  N, k  M. Let us define the following binary decision variables; 

• xijk = 1 iff customer j follows customer i in the sequence visited by vehicle k, 

• yik = 1 iff customer i is visited by vehicle k, 

and the real decision variables: 

• ti service start time of the customer i  N, 

• Sk start time of the route of vehicle k, 

• Fk finish time of the route of vehicle k. 

For i  N we define the following auxiliary real variables: 

• x0 total time of realization of all tours, 

• y0 such level   that -cut of G
~

 contains x0, 

• yi such level   that -cut of iWT
~~

 contains ti, 

• y lower bound of all levels of iWT
~~

 and G
~

. 

Constraints for the tours and the capacity of the vehicles: 
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Constraints for the schedules: 
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for i, j  N and k  M. 
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Constraints for the evaluation of the levels of satisfaction: 
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The objective function is stated as follows: 

.max→y  

Maximal value y* is equal to SAT ),( *
~ S
G

 where S* is the optimal set of tours with the 

schedules which satisfy the temporal and goal constraints to the highest degree. The above 

model can be solved by commercial packages for integer programming but only for small 

size problems. For practical problems heuristic algorithms have to be developed. 
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3. Constraint programming 

Constraint programming is an easy way to express the problem considered in a de-

clarative rather than algorithmic manner. It consists in imposing a set of constraints on 

the decision variables from the mathematical model of the problem. Programming 

systems (such as IF/PROLOG, CHIP, SICSTUS, PROLOG, ILOG SOLVER and many 

others) supply methods for searching solutions which satisfy the imposed set of con-

straints. 

In computational examples the IF/PROLOG logic programming language is used. 

We present some fundamental issues of the constraint programming by an example of 

package const_linear [3], which is used to impose linear constraints on rational 

value variables. 

3.1. Variables and domains 

Names of variables start with capital letters. Each variable has a set of possible 

values. This set is called the domain of variable. 

If the domain of variable X has more than one element, the predicate 

is_constraint(X) is true. 

Rational number P/Q is written with prefix 0r as 0rP/Q, where P and Q are integer 

numbers from the range 10300 000. It warrants the accuracy of solutions without the 

aggregation of rounding errors. 

3.2. Linear terms, constraints and objective function 

The syntax of a linear term is as follows: 

linear term ::= variable 

 rational constant 

 + linear term 

 – linear term 

 linear term + linear term 

 linear term – linear term 

 linear term * linear term 

 linear term / linear term 

 (linear term) 

Multiplication of two variables is allowed in the linear term but it is delayed until 

one of them has been instantiated (division of two variables is forbidden). 
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The syntax of a linear constraint is as follows: 

linear constraint ::= linear term $= linear term 

 linear term $<= linear term 

 linear term $>= linear term 

 linear term $< linear term 

 linear term $> linear term 

 linear term $\= linear term 

Let L be the lists of variables [X1, X2, …, Xn]. The following predicates are de-

fined: 

all_positive(L) variables have positive values, 

all_negative(L) variables have negative values, 

all_different(L) variables have different values. 

Let LT be a linear lerm. To find the maximal value of LT the predicate line-

ar_maximize(LT, M) is used, where M is the variable to which the value found is 

assigned. To find the minimal value linear_minimize(LT, M) is used. 

3.3. Constraint programming vs. simplex method 

Simplex method searches for the optimal solution proceeding from one basic solu-

tion to another. When the optimum is obtained we have only one optimal solution 

known to us. It is possible to enumerate all alternative optimal basic solutions through 

changing the basis. 

In the constraint programming the optimal solution is obtained through symbolic 

operations: variable elimination (projection), constraint propagation and redundant 

constraints elimination. The optimal solution is not represented as a basic vector but 

as a set of constraints, which are fulfilled by the optimal solutions only. 

Example 1. Find the maximal value of x + y subject to x + y  5, where x and y 

are unrestricted real variables. 

The linear programming model for the above example in CPLEX format is as fol-

lows: 

Maximize 

 obj: x + y  

Subject To 

 c1: x + y <= 5 

Bounds 

 x Free 

 y Free 

End 
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The simplex method from CPLEX library finds the following solution: 

CPLEX> display solution variables 1-2 

Variable Name  Solution Value 

x  5.000000 

All other variables in the range 1-2 are zero. 

The solution x = 5, y = 0 is only one from a continuum set of optimal solutions. 

To solve Example 1 with the constraint programming, the following goal is given 

to IF/PROLOG system: 

:- import const_linear 

[user] ?- X+Y $=< 5, linear_maximize (X+Y, Z). 

The answer is as follows: 

X = __2 

Y = __3 

Z = 5 

which says that the maximal value of the objective function is 5 but variables 

x and y have domains containing more than one value (there are more than one opti-

mal solutions). 

With the following goal in SICSTUS PROLOG: 

| ?- use_module (library (clpr)). 

| ?-clpr: {X+Y=:=5},  sup(X+Y, Z) 

we get the answer: 

Z = 5.0, 

{Y=5.0-X} 

yes 

with the maximal value z = 5 and the equation y = 5 – x, which describes the set of all 

the optimal solutions in Example 1. 

4. Improved solutions 

Let us consider the following simple example: 

Example 2. Three fuzzy triangular numbers X
~

 = (0, 1, 2), Y
~

 = (2, 3, 4), Z
~

 = 

(1, 2, 3) are given. Find realizations x, y, z of X
~

, Y
~

, Z
~

, which fulfil the condition 

x  z  y  z and such that their degrees of membership functions )(),(),( ~~~ zyx
ZYX

  

are as high as possible. 



Improved solutions for vehicle routing... 105 

The linear programming model for the above example is as follows: 
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where 1, 2, 3 are possible levels for the realizations x, y, z. 

Library CPLEX finds the optimal solution * = 0.5, x = 0.5, y = z = 2.5 (see Figure 

4a). Fuzzy number X
~

 has realized itself as value x = 0.5 with )(~ x
X

  = 0.5 but thre is 

a better value x = 1 with )1(~
X

 = 1. 

 

Fig. 4. Max-min optimal solution a) and improved solution b) 

The following goal in IF/PROLOG solves the above linear programming model: 

[user] ?- X $>= L1, X $=< 2-L1, 

 Y $>= 2+L2, Y $=< 4-L2, 

 Z $>= 1+L3, Z $=< 3-L3, 

 X $=< Z, Y $=< Z, 

 L $=< L1, L $=< L2, L $=< L3, 

 linear_maximize(L, MAX). 

a) b) 
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In the answer: 

X  = __3 

L1  = __2 

Y  = 0r5/2 

L2  = 0r1/2 

Z = 0r5/2 

L3 = 0r1/2 

L = 0r1/2 

MAX = 0r1/2 

the values __3 ans __2 mean that there are more than one optimal solution for differ-

ent values of variables X and L1. 

To obtain a solution with the maximal value of the membership function of reali-

zation x, the predicate linear_maximize(L1, MAXL1) has to be added at the end 

of the goal: 

[user] ?- X $>= L1, X $=< 2-L1, 

 Y $>= 2+L2, Y $=< 4-L2, 

 Z $>= 1+L3, Z $=< 3-L3, 

 X $=< Z, Y $=< Z, 

 L $=< L1, L $=< L2, L $=< L3, 

 linear_maximize(L, MAX), 

 Linear_maximize(L1, MAXL1). 

In the answer: 

X  = 1 

L1  = 1 

Y  = 0r5/2 

L2  = 0r1/2 

Z = 0r5/2 

L3 = 0r1/2 

L = 0r1/2 

MAX = 0r1/2 

MAXL1 =1 

the realization of X
~

 is equal to 1 (see Fig. 4b). 

In [1], the improved solution for the fuzzy constraints satisfaction problem is de-

fined and algorithms for solving it are proposed. 

For the problem considered we propose Algorithm 1. It makes use of predicate 

is_constraint(Var), which is true when its argument is a variable with domains 

containing more than one value. 
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Algorithm 1. Finds the improved solution where 1, 2, ..., n are the degrees of 

satisfaction of realizations 

1: L0  {1, 2, ..., n} 

2: k  0 

3: while Lk   do 

4:   let yk be a new variable 

5:   for all   Lk do 

6:       impose constraint yk   

7:  end for 

8:  call linear_maximize(yk,_) 

9:  Lk+1  {  Lk|is_constraint()} 

10: k  +1 

11: end while 

 

Property 1. In line 8 of Algorithm 1 at least one variable from set Lk gets a value, 

so in line 9 set Lk+1 is a proper subset of the set Lk. 

Proof: All the variables in set Lk have values bounded to interval [0, 1]. The value 

of variable yk is their lower bound. If there are no acute inequalities, then the maximal 

value of yk is given to at least one variable from set Lk.  

Proposition 1. Algorithm 1 performs at most n iterations. 

Proof: The proposition follows immediately from Property 1.  

The solution found by Algorithm 1 has the following important property: 

Property 2. Let u = (u1, u2, …, un) be the vector of values of variables 1, 2, ..., n 

found by Algorithm 1. If v = (v1, v2, …, vn) is any other vector of feasible values of 

variables 1, 2, ..., n, then if for some variable i condition vi > ui is fulfilled, then 

for some other variable j condition vj < uj  ui is fulfilled. 

Proof: Suppose that 

 )()( jjijjiii uvuuuv → . (1) 

Let  = (1, 2, …, n) be the permutation of indices {1, 2, …, n} such that u1
  

u 2
  …  u n

. The permutation  has the property that, for any 1  p < q  n, variable 

 p
 acquires its value in Algorithm 1 not later than variable  q

 does. 

If vectors u and v there exists more than one value of i which fulfils (1), then let i 

be such a value that ui is the smallest. 

Let l be the position of ui in the sequence (u1
, u2

, …, un
). Selection of i which 

fulfils (1) and corresponds to the minimal value ui assures that uk
 = vk

, for all k = 1, 2, 

…, l – 1: 
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Variable  l
 has reached in line 8 of Algorithm 1 a value u l

, which is maximal, 

but this is inconsistent with the fact that the value v l
 is also feasible and v l

 > u l
.   

In [4], a new computer representation of fuzzy numbers and fuzzy constraint was 

proposed. It was used Kobylański and Zieliński in package const_fuzzy for fuzzy 

Modelling. Algorithm 1 was implemented in const_fuzzy to find improved solu-

tions. 

The package const_fuzzy contains the following predicates: 

• fuzzy(F, [A, B, C, …]) – defines fuzzy number F (interval, triangular or 

trapezoidal) with parameters A, B, C, …, 

• fconstr(FC, [X, Y, Z, …], C) – defines fuzzy constraint FC with logical 

condition C on fuzzy numbers X, Y, Z, …, 

• poss(FC, P, V) – computes (by Algorithm 1) the maximal degree P of satis-

faction of fuzzy constraint FC and assigns to variable V a list of realizations of fuzzy 

numbers in FC and values of their membership functions. 

The following dialog, which makes use of predicates from package 

const_fuzzy, solves Example 2: 

[user] ?- fuzzy(X, [0, 1, 2]), 

 fuzzy(Y, [2, 3, 4]), 

 fuzzy(Z, [1, 2, 3]), 

 fconstr(FC, [X, Y, Z], (X =< Z, Y =< Z)), 

 poss(FC, POSS, VECT). 

POSS  = 0r1/2 

VECT  = [f(1,1), f(0r5/2, 0r1/2), f(0r5/2, 0r1/2)] 

List VECT = [ f(x, 1), f(y, 2), f(z, 3)] = [ f(1, 1), f(5/2, 1/2), f(5/2, 1/2)] repre-

sents a solution which is shown in Figure 4b. 

5. Two stage method 

In [5], two heuristic for the problem considered were presented. In this paper, 

a second stage is proposed. In the first stage, the set of tours is constructed and in the 

second stage, an improved schedule with the degrees of satisfactions of all the tem-

poral constraints being as high as possible is found. 
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5.1. Tours construction 

The heuristic algorithms proposed make use of the following two functions: 

• INSERT(i, T ) – creates a new tour by inserting customer i into tour T [8], 

• MERGE(T1, T2) – creates a new tour by merging two tours T1 and T2. 

5.1.1. Construction by insertion 

The algorithm starts with a set of tours S0 which consists of K empty tours [0, 0]. 

In the following iterations i = 1, 2, …, n, there is created a new set of tours Si by 

insertion of one of the customers who have not been served yet into one of the K 

tours, from the set Si–1, in one of possible positions. The selection of the customer, 

tour and position is made in such a way that the value of SAT )(~ iG
S  is maximized. 

5.1.2. Construction by merging 

The algorithm starts with a set of tours S0 which consists of n tours [0, i, 0], for 

every customer i = 1, 2, …, n. 

In the following iterations i = 1, 2, …, n – K, there is created a new set of tours Si 

by replacing two tours from the set Si–1 with their merge. The selection of the two 

tours is made in such a way that the value of SAT )(~ iG
S  is maximized. 

Let L1 || L2 and REVERSE(L) denote respectively concatenation of two lists and the 

reverse of list. I the computational experiments the operation MERGE was carried out 

in the following way: 

If T1 = [0]||L1||[0] and T2 = [0]||L2||[0] are two tours, then MERGE(T1, T2) = 

[0]||L||[0], where L is one of the following eight lists: 

 L1||L2, L2||L1, 

 L1||REVERSE(L2), REVERSE(L2)||L1, 

 REVERSE (L1)||L2, L2||REVERSE(L1), 

 REVERSE(L1)||REVERSE(L2), REVERSE(L2)||REVERSE(L1). 

5.2. Improved schedule 

For the set of tour which was constructed in the first stage, the max-min optimal 

schedule is improved. 

The set of tours is stored as the set of K lists L1, L2, …, LK. Each list Li contains 

indexes of customers serviced by the i-th vehicle, ni is the number of customers on list 

Li and Lij is the index of the j-th customer on list Li. 
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In Figure 5, an example of two tours is presented, where n1 = 3, n2 = 2, L11 = 3, 

L12 = 1, L13 = 5, L21 = 2, L22 = 4. 

 

Fig. 5. Two tours [0, 3, 1, 5, 0] and [0, 2, 4, 0] 

(the travel times are given on arcs) 

The depot is opened in interval [e0, l0] and for each customer i  N the time win-

dow iWT
~~

 as a fuzzy triangular number (ai, bi, ci, di) is given. The service time in the 

depot and at the customer equals si, for i  N0. 

For i, j  N0 the travel time tij between the depot and the customers is a crisp real 

number. 

The improved schedule is computed by Algorithm 2, which uses Algorithm 1 in 

predicate poss/3. 

Algorithm 2. Computing the improved schedule. 

 1: for all i  N do 

 2:   let Ti be a new variable 

 3:   call fuzzy (Ti, [ai, bi, ci, di]) 

 4: end for 

 5: let G be a new variable 

 6: call fuzzy (G, [0, 0, g1, g2]) 

 7: for all k = 1, 2, …, K do 

 8:   let Sk be a new variable 

 9:   call fuzzy (Sk, [e0, l0]) 

10:   let Fk be a new variable 

11:   call fuzzy (Fk, [e0, l0]) 

12: end for 
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13: let 0 be a constraint G = )(1 kk
K
k SF −=  

14: for all k = 1, 2, …, K do 

15:   let k be a constraint )()(
,1,1,1,1,1, 2,00 kiikikikki

k

kk LLLLL
n
iLkL tsTTtsST

−−−
++++ =  

 )( 0,,,, knkknkknk LLLk tsTF ++  

16: end for 

17: Let L be a list [T1, T2, …, Tn, S1, S2, F2, …, Sk, Fk, G] 

18: call fconstr(FC, L, 0  1  …  k) 

19: call poss(FC, P, V) 

Constraint 0 (in line 13 of Algorithm 2) corresponds to the satisfaction of the to-

tal time of realization of all the tours and constraint k (in line 15) corresponds to the 

feasibility of the schedule for the k-th vehicle. 

The following example shows hot the improved schedule could be found with 

IF/PROLOG: 

Example 3. Customers N = {1, 2, 3, 4, 5} have the same triangular time window 

(2, 5, 8). They are served by two vehicles and the set of tours is S = {[0, 3, 1, 5, 0], 

[0, 2, 4, 0]} (travel times are given in Fig. 5). All the service times are equal to 

0(si = 0, for i  N0). 

The depot is opened from 0 to 11 and the satisfaction of the total realization time 

is expressed with fuzzy triangular number G
~

 = (0, 0, 10, 20). 

 

Fig. 6. Improved schedule for tours in Example 3 
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The following query in IF/PROLOG solves Example 3. 

[user] ?- fuzzy(T1, [2, 5, 8]) 

 fuzzy(T2, [2, 5, 8]), 

 fuzzy(T3, [2, 5, 8]), 

 fuzzy(T4, [2, 5, 8]), 

 fuzzy(T5, [2, 5, 8]), 

 fuzzy(G, [0, 0, 10, 20]), 

 fuzzy(S1, [0, 11]), 

 fuzzy(S2, [0, 11]), 

 fuzzy(F1, [0, 11]), 

 fuzzy(F2, [0, 11]), 

 fconstr(FC, [T1, T2, T3, T4, t5, S1, F1, S2, F2, G], ( 

  G = (F1-S1) + (F2-S2), 

  T3 >= S1+4, T1 >= T3 +2, T5 >= T1+1, F1 >= T5+3, 

  T2 >= S2+2, T4 >= T2 +3, F2 >= T4+1)), 

 poss(FC, P, V). 

In the answer the degree of satisfaction of all the constraints is equal to P = 1/3 

and vector contains the following improved schedule (presented on Gantt diagram in 

Figure 6): 

2

1
)(,

2

7
,

3

2
)(,6 2~~21~~1

21

==== TTTT
WTWT

 , 

2

1
)(,

2

13
,

3

2
)(,4 4~~43~~3

43

==== TTTT
WTWT

 , 

10,0,
3

1
)(,7 115~~5

5

==== FSTT
WT

 , 

5

2
)(,16,

2

15
,

2

3
~25 ==== GFFS
G

 . 

6. Conclusions 

The method proposed in this paper for obtaining an improved solution to the prob-

lem considered eliminates the main drawback of the max-min optimal solution relying 

on the low degree of satisfaction of the time windows or the goal constraints. 

The crucial problem especially in transportation problems is obtaining a solution sat-

isfying to the highest possible degree the time window constraints (then the preferences 

of the customers are taken into account) and the goal constraint (then the preferences of 

transport agent concerning the work time of the vehicle are taken into account). 
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In our opinion the constraint programming is the best tool for the implementation 

of the method of obtaining the improved solution. 
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Poprawione rozwiązania 

dla zagadnienia planowania i harmonogramowania tras dla samochodów 

z rozmytymi oknami czasowymi klientów i rozmytym celem 

W artykule omówiono problem planowania i harmonogramowania tras dla samochodów w warun-

kach istnienia rozmytych okien czasowych klientów i rozmytego celu. Sformułowano model mieszany 

programowania całkowitoliczbowego bazujący na kryterium max-min i wykorzystujący zasadę uogólnia-

nia Zadeha. Rozwiązanie optymalne tego modelu, nazywane rozwiązaniem max-min optymalnym, ma 

tendencję obniżania stopni satysfakcji ograniczeń czasowych lub celu. W celu wyeliminowania tego 

mankamentu zastosowano koncepcję poprawionych rozwiązań optymalnych (Dubois i Fortemps, 1999). 

Zaproponowano dwuetapową metodę znajdowania takich rozwiązań, opartą na programowaniu z więzami 

jako efektywnym narzędziem do rozwiązywania rozpatrywanego problemu. 


