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Sensitivity analysis of parameters is usually more important than the optimal solution when it 
comes to linear programming. Nevertheless, in the analysis of traditional sensitivities for a coefficient, 
a range of changes is found to maintain the optimal solution. These changes can be functional con-
straints in the coefficients, such as good values or technical coefficients, of the objective function. When 
real-world problems are highly inaccurate due to limited data and limited information, the method of 
grey systems is used to perform the needed optimisation. Several algorithms for solving grey linear 
programming have been developed to entertain involved inaccuracies in the model parameters; these 
methods are complex and require much computational time. In this paper, the sensitivity of a series of 
grey linear programming problems is analysed by using the definitions and operators of grey numbers. 
Also, uncertainties in parameters are preserved in the solutions obtained from the sensitivity analysis. 
To evaluate the efficiency and importance of the developed method, an applied numerical example is 
solved. 
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1. Introduction  

Sensitivity analysis is an important issue in dealing with optimisation problems. It 
includes analysing the effect of changes in the cost vector, in the right-hand side vector 
on the optimal value of the objective function, and the validity of these effects. Many 
attempts have been made to investigate the behaviour of such a problem under the in-
fluence of changing inputs. During a decision-making process, the presence of uncer-
tainty in the data and the situation a linear-programming problem usually confronts the 
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decision-maker with conditions of doubt and uncertainty and makes it difficult for him 
to decide and choose the best option [4]. Therefore, to model a problem with linear 
programming (LP) techniques, although the coefficients are usually determined by ex-
perts with precision, they usually contain a level of uncertainty in the expressed values. 
For this reason, modelling real-life problems, each of which is seen as an uncertain sys-
tem, with inaccurate data by using interval, fuzzy, or grey parameters would be more 
appropriate [29]. For example, fuzzy sets are utilised to define vague information, in-
terval numbers are introduced to describe the boundary information and grey numbers 
are employed to characterise information that is partially known with limited observa-
tions [46]. In the stochastic approach, imprecise parameters are considered as random 
variables following some known probability distributions. On the contrary, in fuzzy ap-
proaches, the uncertainty is viewed either as a fuzzy set with an appropriate membership 
function or as a fuzzy number. Generally, it is practically difficult for a researcher to 
obtain either an appropriate membership function or a reasonable probability distribution in 
an uncertain decision-making situation. To overcome such a practical difficulty, some schol-
ars have used intervals to specify imprecise parameters, from which reasonable results are 
obtained [47]. As a novel approach to describe and depict a realistic uncertainty and to deal 
with real-life decision-making problems, grey system theory employs grey numbers to rep-
resent the uncertainty of information [33]. This theory possesses the advantages of all such 
theories as fuzzy mathematics, probability and statistics, and interval numbers also can ap-
propriately describe the spirit of practical problems [48]. 

One approach to the study of uncertain systems is fuzzy set theory, where the fuzzy 
LP formulation was first proposed by Zimmerman [52].  

A preliminary review of the sensitivity analysis of fuzzy LP is made by Hammaker 
et al. [10] and followed by others [13, 16, 22]. Another uncertainty approach to the study 
of uncertainty problems is the Grey Syst. Theory, first proposed by Julong Deng in 
1982. The Grey linear programming (GLP) problem is a model developed for analysing 
grey systems (GS) that exists in an inaccurate environment [21]. Linear programming 
with grey parameters has been widely used in modelling real issues in resource man-
agement planning, economics, geography, industry, etc. [1, 14, 15, 18, 19, 40, 45, 49]. 
Researchers have proposed several methods to solve GLP [7]. The first of such methods 
uses the concept of grey-number whitening to solve the GLP problem [21, 27, 28, 34, 
41, 42, 43]. The second is the method that seeks to find an answer to the problem of 
GLP based on the use of the concepts of grey matrix inverses [25, 26]. The existence of 
many procedural steps and the lack of criteria for stopping after finding the answer are 
the two main drawbacks of this method. The third method uses the display of grey num-
bers in the form of intervals and the ranking of intervals to solve the GLP problem [34, 
41]. The fourth is the method presented by Nasseri et al. [39]. In this case, an attempt is 
made to solve the GLP problem directly without the need to whitenise parameters. The 
disadvantage of this method is that it is used only to solve the GLP problem with a grey 
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objective function. Today, due to the unstable economic, social, geographical, and cli-
matic conditions of the world, it seems necessary to analyse the sensitivity of the results 
of the GLP problem for decision-makers to make the right decisions in the world. There-
fore, to deal with GLP problems, due to changes in some parameters, in terms of calcu-
lations, time and complexity, we have to conduct the sensitivity analysis of the GLP 
under consideration. 

The different sections of this article are arranged as follows. In Section 2, the pre-
liminaries and basic concepts of grey system theory (GST) are introduced. Section 3 
introduces GLP and its types of modelling. In Section 4, the sensitivity analysis of GLP 
and related algorithms are presented. In Section 5, an example is shown to illustrate the 
performance of the algorithms, and finally, in Section 6, the results of this study are 
presented. 

2. Basic concepts 

This section is devoted to the concepts related to grey systems (GS), interval grey 
numbers, grey number arithmetic, and comparison of interval grey numbers used during 
this study [24, 29, 35, 51]. 

Information about real-life systems is not entirely known or completely unknown, 
but a mixture of some known and unknown information. Due to incomplete, inaccurate, 
and approximate information, there is a level of uncertainty in the understanding and 
description of the underlying system. Such systems are called grey systems [12]. The 
grey systems theory (GST) is one of the most important scientific achievements about 
how to make use of inaccurate information; it represents a new way to study problems 
that involve high levels of uncertainty due to limited availability of data and limited 
amounts of information when fuzzy system theory and statistics and probability cannot 
be effectively employed [30]. Many researchers have turned to grey systems theory as 
an appropriate approach to dealing with uncertainties in real-world problems [2, 9, 10, 
32, 37, 38]. 

Definition 2.1. An interval grey number (IGN) x⊗ is defined as follows: 

 [ ] { }, ,x x x x t x x x⊗ ∈ = ≤ ≤ <   (1) 

where t is a piece of information, x and x  the lower and upper bounds of the infor-
mation [3].  
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Definition 2.2. Given an IGN [ ], ,x x x⊗ ∈  its centre ˆ( )x⊗  and width ( )Wx⊗ are de-
fined as follows [39]: 

 ˆ ,
2 2W

x x x xx x+ −⊗ = ⊗ =   (2) 

Definition 2.3. For any IGN [ ], ,x x x⊗ ∈  the expression ( )x x x⊗ = − is called 
the length of the IGN [39]. 

Definition 2.4. By using the centre and length of an IGN [ ], , ,x x x x x⊗ ∈ <  the 
greyness of x⊗  is defined as follows [31]:  

 ( ) ( ) ˆ, 0
ˆ
x

g x x
x

⊗
° ⊗ = ⊗ ≠

⊗


  (3) 

An interval representation means that any value within the interval is a possible value. 
However, we may know that the possible value can only be one of a finite number of 
values within the interval. For this situation, an interval representation cannot help. Inter-
vals can be considered as a special case of grey numbers where we know the scope of the 
underlying number but do not know its exact position inside the continuous scope [50]. 

In grey systems theory, there is often a need for one to compare grey numbers to 
make the right decision. Darvishi et al. [10] study the comparison of grey numbers in 
more detail in various ways. One method of comparing IGNs is to use the centre and 
the degree of greyness. When two grey numbers are completely overlapping interval 
grey numbers, many of the existing methods such as grey possibility degree approaches, 
surveyed previously fail to recognise the ordering of these numbers. Many of these 
methods cannot identify positive and negative interval grey numbers. Due to the simul-
taneous use of the centre and the degree of greyness, such a comparison of IGNs per-
forms better than other ranking methods and distinguishing between IGNs.  

Definition 2.5. Comparison of IGNs 

Suppose that [ ],x x x⊗ =  and ,y y y ⊗ =    are two IGNs. If the centres and the 

greynesses of the given numbers are employed, the following relations hold [32]. 
If ˆ ˆ ;Gx y x y⊗ < ⊗  ⊗ < ⊗  
If ˆ ˆx y⊗ = ⊗ , thus 
If ( ) ( ) ;Gg x g y x y° ⊗ = ° ⊗ ⊗ = ⊗  



Sensitivity analysis of grey linear programming for optimisation problems 39

If ( ) ( ) ;Gg x g y x y° ⊗ < ° ⊗ ⊗ > ⊗  
If ( ) ( ) .Gg x g y x y° ⊗ > ⊗ ⊗ < ⊗  

Theorem 2.1. A grey number [ ],x x x⊗ =  is said to be non-negative, ˆ 0x⊗ ≥  [39]. 

Definition 2.6. Let [ ]1 1 1,x x x⊗ ∈ and [ ]2 2 2,x x x⊗ ∈ be two IGNs. The following 
operations can be defined [24]: 

[ ]
( ) [ ]

{ } { }

[ ]

1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

11 1 1 1 1 1 1 1 1
1 2 2 2

2 2 2 2 2 2 2 2 2

,

,

min , , , , max , , ,

min , , , , max , , , 0 ,

x x x x x x

x x x x x x x x

x x x x x x x x x x x x x x x x x x

x x x x x x x x xx x x x
x x x x x x x x x

−

⊗ + ⊗ = + +

⊗ − ⊗ = ⊗ + − ⊗ = − −

⊗ × ⊗ =   
    ⊗ = ⊗ × ⊗ = ∉    ⊗     

  (4)   

The following section introduces the GLP problem, its different types and related 
concepts. 

3. Grey linear programming (GLP) 

 The general form of LP in matrix form is given as follows: 

 

( )

( )

max min
s.t.

Z CX

AX b
X

=

≤ = ≥
≥ 

  (5)  

where all parameters of A, b, and C are exact numbers. However, in many real-world 
situations, the data and information of the problem of concern are not clear, not accurate, 
or not conclusive. In these situations, one should use some types of modelling that can 
handle inaccurate conditions [20]. Due to the inherent uncertainty existing in real-life 
problems, various methods, such as LP with interval parameters, fuzzy linear program-
ming (FLP), or GLP problem, have been developed to deal with these problems. In the 
meantime, the GLP problem that is appropriate for dealing with inaccurate conditions 
provides better results. The general problem of GLP is given as follows [5, 30]: 
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1

1

max

subject to

, 1, 2, ...,

, 1, 2, ...,

n

G j j
j

n

ij j G i
j

j G

z c x

a x b i m

x j n

=

=

⊗ = ⊗ ⊗

⊗ ⊗ ≤ ⊗ =

⊗ ≥ ⊗ =






  (6)  

A GLP problem can be stated in a more convenient form by using matrix notation 
as follow. 

  

max
subject to

0

G

G

G

z C X

A X b
X

⊗ = ⊗ ⊗

⊗ ⊗ ≤ ⊗
⊗ ≥ ⊗

  (7)  

so that 

 

[ ]
[ ]
[ ]

1 2

1 2

1 2

11 12 1

21 22 2

1 2

, , ,

...

...

...
...

...
...

T
n

T
n

T
m

n

n

m m mn

X x x x

C c c c

b b b b

a a a
a a a

A

a a a

⊗ = ⊗ ⊗ ⊗

⊗ = ⊗ ⊗ ⊗

⊗ = ⊗ ⊗ ⊗

⊗ ⊗ ⊗ 
 ⊗ ⊗ ⊗ ⊗ =
 
 
⊗ ⊗ ⊗ 



  (8) 

where X⊗ is the vector of grey decision variables. Vector C⊗ is the grey cost coeffi-
cients vector, b⊗  the grey right-hand-side vector, and A⊗ the grey technological co-
efficients. All the relevant vectors satisfy  

 

, ,

, , , 1, 2, ...,

, , , 1, 2, ...,

, , , 1, 2, ...,

, , , 1, 2, ..., , 1, 2, ...,

j j j j j

j j j j j

i i i i i

ij ij ij ij ij

Z Z Z Z Z R

x x x x x R j n

c c c c c R j n

b b b b b R i m

a a a a a R i m j n

 ⊗ ∈ ∈ 
 ⊗ ∈ ∈ = 
 ⊗ ∈ ∈ = 
 ⊗ ∈ ∈ = 
 ⊗ ∈ ∈ = = 

 (9) 
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Other different models of the GLP problem can be introduced as follows: 
1. The GLP problem with only the cost vector being grey. 

 

1

1

max

subject to

, 1, 2, ...,

, 1, 2, ...,

n

G j j
j

n

ij j i
j

j

z c x

a x b i m

x n

=

=

⊗ = ⊗

≤ =

≥ =






  (10) 

2. The GLP with only the right-hand-side vector being grey. 

  

1

1

max

subject to

, 1, 2, ...,

0, 1, 2, ...,

n

j j
j

n

ij j G i
j

j

z c x

a x b i m

x j n

=

=

=

≤ ⊗ =

≥ =




  (11) 

3. The GLP with only the technological coefficients matrix being grey . 

 

1

1

max

subject to

, 1, 2, ...,

0, 1, 2, ...,

n

j j
j

n

ij j G i
j

j

z c x

a x b i m

x j n

=

=

=

⊗ ≤ =

≥ =




  (12)   

By combining these models in different ways, other types of GLP can be obtained, 
where some of the coefficients and decision variables of the problem include grey num-
bers. According to different models of grey linear programming, researchers have pro-
posed different methods to solve them [5, 23, 44]. 

Definition 3.1. Any vector x⊗ of IGNs that satisfy the constraints of the GLP in 
equation (7) is called a feasible solution . 
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Definition 3.2. Assume that Q is the set of all feasible solutions to the GLP in equa-
tion (7). Then 0x Q⊗ ∈ is said to be an optimal solvable solution to the GLP, if for all

x Q⊗ ∈ , 0.GC x C x⊗ ⊗ ≤ ⊗ ⊗  

Definition 3.3. For any real number x, we have [ ], .x x x⊗ =  

Remark 3.1. Consider the following GLP 

 
max
subject to

0, 0

G B B N N

B G N G

z C X C X

X X

⊗ = ⊗ ⊗ + ⊗ ⊗

⊗ ≥ ⊗ ⊗ ≥ ⊗
  (13) 

Table 1. The simplex tableau of the GLP in equation (13) 

R.H.S ⊗XN ⊗XB ⊗Z Basis 
1

00 G By C B b−⊗ = ⊗ ⊗  1
B NC B N C−⊗ − ⊗  0  1  ⊗Z 

1
00 Gy B b−⊗ = ⊗  1B N−  I  0  ⊗XB 

 
The cost row gives 1

B NC B N C−⊗ − ⊗ which consists of the 1
0 j G B jy C B a−⊗ = ⊗  

j G j jC Z C− ⊗ = ⊗ − ⊗ ’s for the non-basic variables and consists of the 0 0j Gy⊗ = ⊗ ’s, 
, 1, 2,...,ij B i m= =  for the basic variables. 

Definition 3.4. Basic feasible solution 

Consider the grey system in equation (7), where A  is a m n×  matrix, b⊗  and x⊗ are 
an m vector and n vector, respectively, satisfying ( ) ( )rank , rank .A b A m⊗ = =  After pos-
sibly rearranging the columns of A, let [ ], ,A B N=  where B is a m m×  invertible matrix 

and N  is a ( )m n m× − matrix. The solution ,T T T
B NX x x ⊗ = ⊗ ⊗   to the equations 

,GA X b⊗ = ⊗  where 
1 2
, , ...,

m

T

B B B BX x x x ⊗ = ⊗ ⊗ ⊗   and 0,N GX⊗ = ⊗  is called 

a basic solution of the system. If 0B Gx⊗ ≥ ⊗ , then X⊗ is called a basic feasible solution 
of the system. 

Below are some results related to grey linear programming (taken from [37]). 

Theorem 3.1. If there is a basic feasible solution with grey objective value Z⊗  such 
that 0 0j G j j Gy Z C⊗ = ⊗ − ⊗ < ⊗  or j G jZ C⊗ < ⊗ for some non-basic variable ,jx⊗  and 
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1 0j jy B a−= ≤/  1 ,j n≤ ≤  then it is possible to obtain a new basic feasible solution with 

a new grey objective value Z ′⊗  that satisfies .GZ Z ′⊗ ≤ ⊗  

Theorem 3.2. If there is a basic feasible solution satisfying 
1

0 0k G B k k G k k Gy C B a C Z C−⊗ = ⊗ − ⊗ = ⊗ − ⊗ < ⊗  

for some non-basic variable ,kx⊗ and 0, 1, 2, ..., ,ik Gy i m≤ =  then the problem in equa-
tion (7) has an unbounded optimal solution. 

Theorem 3.3. If a basic solution 1 ,B GX B b−⊗ = ⊗  0N GX⊗ = ⊗  is feasible to the 
problem in equation (7) and 1 ,B j G jc B a c−⊗ ≥ ⊗  for all 1, 2, ..., ,j n=  then the basic solu-
tion is an optimal solution to the problem in equation (7). 

Although different algorithms are developed to solve GLP, let us focus on the GLP 
simplex algorithm. 

Algorithm 3.1. The simplex algorithm of GLP  
Suppose that a basic feasible solution is also accompanied with a basis B and cor-

responding simplex table. 
1. The basic feasible solution is given by 1

0B G Gx B b y−⊗ = ⊗ = ⊗  and 0.N Gx⊗ = ⊗  
Then the grey objective function value will be: 1

00 .G B GZ c B b y−⊗ = ⊗ ⊗ = ⊗  
2. Calculate ,j G j jy Z C°⊗ = ⊗ − ⊗  1, 2, ..., , , 1, 2, ..., .ij n j B i m= ≠ =   

Let { }0 01
min .k G jj n

y y
≤ ≤

⊗ = ⊗  

3. If 0 0,k Gy⊗ ≥ ⊗  then stop; the solution is optimal. 
4. If 0 0k Gy⊗ < ⊗  and 0, 1, 2, ..., ,iky i m≤ =  the problem has an unbounded solu-

tion. 
5. If 0 0k Gy⊗ < ⊗  and there is 1, 2, ...,i m= so that 0,iky >  then determine an index r 

corresponding to a variable Brx  that leaves the basis as follows 

0 0
1
min 0r i

G iki m
rk ik

y y y
y y≤ ≤

 ⊗ ⊗= > 
   

6. Pivot on rky and update the simplex tableau. Go to step 2. 
In the following, we will look at an example to demonstrate how the above algo-

rithm plays out in real life. Some applications in the real-life problem that can be mod-
elled as an uncertain system with inaccurate data by using interval, fuzzy or grey pa-
rameters are mentioned in [6, 8, 36]. 



 D. DARVISHI et al. 44

Example 3.1. Consider the following GLP. 

[ ] [ ]

[ ] [ ] [ ]
[ ] [ ] [ ]

1 2

1 2

1 2

1 2

max 2, 4 1, 6
subject to

3, 3 4, 4 7, 9

1,1 2,2 5, 6
, 0

G

G

G

G

z x x

x x

x x
x x

⊗ = ⊗ ⊗ + ⊗ ⊗

⊗ ⊗ + ⊗ ⊗ ≤ ⊗

⊗ ⊗ + ⊗ ⊗ ≤ ⊗
⊗ ⊗ ≥ ⊗

 

Table 2. Starting tableau of the simplex method 

Basis ⊗z ⊗x1 ⊗x2 ⊗s1 ⊗s2 R.H.S 
⊗z° [1, 1]  –[2, 4] –[1, 6] [0, 0] [0, 0] [0, 0] 

⊗s1 [0, 0]  [3, 3]  [4, 4] [1, 1] [0, 0]  [7, 9] 
⊗s2 [0, 0] [1, 1] [2, 2] [0, 0] [1, 1]  [5, 6] 

Table 3. Optimal tableau of the simplex method 

Basis ⊗z ⊗x1 ⊗x2 ⊗s1 ⊗s2 R.H.S 

⊗z° [ ]1,1  13 , 73
 −  

 [ ]1, 6−  [ ]0, 0  [ ]0, 0  7 54,4 4
 
  

 

⊗s1 [ ]0, 0  3 3,4 4
 
  

 [ ]1,1  1 1,4 4
 
  

 [ ]0, 0  7 9,4 4
 
  

 

⊗s2 [ ]0, 0  1 1,2 2
 − −  

 [ ]0, 0  1 1,2 2
 − −  

 [ ]1,1  51 ,2 2
 
  

 

 
The next section presents how the sensitivity analysis of GLP problems is carried 

out. 

4. Sensitivity analysis  

The purpose of the sensitivity analysis in GLP is to investigate how changing some 
parameters of the problem of concern do not need to resolve the problem. Assume that 
the basic optimal solution to a GLP problem is available. In particular, the following 
variations in the problem will be considered: 

• Change in objective function coefficients ( )jc⊗ for non-basic variables. 

• Change in objective function coefficients ( )jc⊗  for basic variables. 
• Change in right-hand-side values ( ).ib⊗  
The effect of the above changes can appear in the following two ways. 
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1. The current grey solution remains optimal. 
2. The current grey solution changes. 

Note 1. Since the coefficients of the slack variables in the objective functions are 
zero, it is unnecessary to study changes of coefficients of the slack variables in the ob-
jective function.  

Algorithm 1. Determine the ranges of objective function coefficients for non-basic 
decision variables that only affect the optimal condition of the grey simplex panel. Since 
changes in the values of the non-basic variables only affect their new values in the op-
timal panel, to keep the answer obtained in the final panel, let us do the following: 

By considering 
jxc⊗ as an unknown value, calculate the new values of the non- 

-basic variables 0 , 1, 2, ..., .
j j jG B x xy c p c j n⊗ = ⊗ − ⊗ =  

By 0
ˆ 0, 1, 2, ...,

j
y j n⊗ ≥ =  (the centre of new values of non-basic variables), inves-

tigate the positive results. 
Share the results of step 2 to determine the desired ranges to keep the optimal results 

of the grey simplex panel constant. 

Algorithm 2. Determine ranges of changes of the objective function coefficients 
for the basic decision variables. If the coefficients of the primary decision variable 
changes in the objective function, all the elements of the zero line of the non-basic and 
total Z⊗ in the final panel of the original model will change. So, to keep the answer 
obtained in the final panel, let us do the following: 

By considering Bc⊗  as an unknown value, calculate non-basic variables from

0 , 1, 2, ..., .
j j jG B x xy c p c j n⊗ = ⊗ − ⊗ =  

Using 0
ˆ 0, 1, 2, ...,

j
y j n⊗ ≥ =  (the centre of the new values of the non-basic varia-

bles), check the positivity of the results. 
Determine the unity of the obtained results from step 2 to identify the desired ranges 

to keep the optimal results of the grey simplex panel constant.  

Algorithm 3. Determine the range of the right-hand-side values of the grey linear 
programming ( ).ib⊗  

Changes in the right-hand-side values of the model in the constraints affect the con-
ditions of feasible solution (the right-hand-side values being positive) of the simplex 
tableau or the optimal solution. In other words, any change in ib⊗  affects the right-
hand-side values of the optimal tableau and causes a change in b⊗ and total .Z⊗  
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Calculate the new right-hand-side values of the model by using 1 ,G ib B b−⊗ = ⊗
1, 2, ..., .i m=  
2. Calculate the right-hand-side values of the model by ˆ 0, 1 2ib i m⊗ ≥ = , , ...,  (the 

center of the right-hand-side values of the model) and check the positivity of the results. 
3. The obtained domains will be the desired domains to keep the current basic var-

iables in the final tableau constant, i.e., the optimality. 
In the following, we will examine a sensitivity analysis by looking at an example. 

5. Numerical example 

In this section, we provide an example to examine how changes in model parameters 
can affect the optimal answer of a grey linear programming model to better understand 
the previously proposed algorithms. 

Example 5.1. Consider the following GLP problem. 

[ ] [ ]

[ ] [ ] [ ]
[ ] [ ] [ ]

1 2

1 2

1 2

1 2

max 1, 3 2, 5
subject to

2, 2 3, 3 5, 7

3, 3 1,1 3, 6
, 0

G

G

G

G

z x x

x x

x x
x x

⊗ = ⊗ ⊗ + ⊗ ⊗

⊗ ⊗ + ⊗ ⊗ ≤ ⊗

⊗ ⊗ + ⊗ ⊗ ≤ ⊗
⊗ ⊗ ≥ ⊗

 

Table 4. Starting tableau of the simplex method 

Basis z⊗  1x⊗  2x⊗  1s⊗  2s⊗  R.H.S 
z⊗   [ ]1,1  [ ]1, 3−  [ ]2, 5−  [ ]0, 0  [ ]0, 0  [ ]0, 0  

1s⊗  [ ]0, 0  [ ]2, 2  [ ]3, 3  [ ]1, 1  [ ]0, 0  [ ]5, 7  

2s⊗  [ ]0, 0  [ ]3, 3  [ ]1,1  [ ]0, 0  [ ]1,1  [ ]3, 6  

Table 5. The optimal tableau of the simplex method 

Basis z⊗  1x⊗  2x⊗  1s⊗  2s⊗  R.H.S 

z⊗   [ ]1,1  5 , 33
 −  

 [ ]0, 0  52 ,3 3
 
  

 [ ]0, 0  10 35,3 3
 
  

 

2x⊗  [ ]0, 0  2 2,3 3
 
  

 [ ]1,1  1 1,3 3
 
  

 [ ]0, 0  5 7,3 3
 
  

 

2s⊗  [ ]0, 0  7 7,3 3
 
  

 [ ]0, 0  1 1,3 3
− − 
  

 [ ]1,1  132 ,3 3
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5.1. The effect of changes in the objective function coefficients  
for non-basic variables 

Since the coefficients of the slack variables in the objective function are zero, so 
changing the coefficients of slack variables is not required in the objective function. 
Therefore, we examine the changes in the coefficients of non-basic decision variables. 

According to the relationship 0 , 1, 2, ..., ,
j j jG B x xy c p c j n⊗ = ⊗ − ⊗ =  it is clear that 

changes in the coefficients of the objective function only affect the optimal condition of 
the simplex tableau. Here, 1x⊗  is non-basic variable; and, we have  

[ ] [ ]( ) [ ] [ ]

1 1 1

1 1

11 1

0 0
2

2 732, 5 , 0 0 0 2,5 0 0 07 3 3
3

4 10 7ˆ, 0 0
3 3 3

G B x x G

x G x G

xx G x

y c p c

c c

c c c

⊗ = ⊗ − ⊗ ≥ ⊗
 
 

⊗ ⊗ − ⊗ ≥ ⊗  + − ⊗ ≥ ⊗ 
 
 

  − − ≥ ⊗  ≤ ⊗ ≤  

, ,  

That is, as long as
1

ˆ0 7/3,xc≤ ⊗ ≤  in other words, as long as the centre of the grey 
numbers which are placed as a coefficient, is between zero and 7/3, the current optimal 
answer will remain unchanged. 

5.2. The effect of changes in the objective function coefficients for basic variables  

If the coefficient of the basic variable in the objective function changes, all elements 
of the zero line of the non-basic variables and the total Z⊗  in the optimal tableau of 
the starting model will change. 

Set the range xc⊗
2
 so that the current optimal solution remains unchanged. Then,  

( )20 2, ,
j j jG B x x B xy c p c c c s⊗ = ⊗ − ⊗ ⊗ = ⊗ ⊗  

[ ]( ) [ ] [ ] [ ]

1 1 1

2 2

22

0 0
2

2 73, 0 0 1, 3 0 0, 0 1, 3 07 3 3
3

2 23, 1 0
3 3

G B x x G

x G x G

xx G

y c p c

c c

c c

⊗ = ⊗ − ⊗ ≥ ⊗
 
 

⊗ ⊗ − ⊗ ≥ ⊗  ⊗ + − ⊗ ≥ ⊗ 
 
 

  − − ≥ ⊗  

,  
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Now, according to Theorem 2.2, we have: 

 

( )2 22 2
22

22

2

2 2 23 1 4 23 3 30 0 2 0
2 2 3 2

ˆ3 3
2

x xx x xx

xx
x

c c c c c c

c c
c

− + − + − + 
≥  ≥  − ≥ 

 

+ 
 ≥  ⊗ ≥ 

 

  

(14)

 

[ ]( ) [ ]

1 1 1

22 2 2

0 0

1
1 2 23, 0,0 0, 0 0 0 , 0

1 3 3 3
3

G B s s G

xx G x G x G

y c p c

c c c c

⊗ = ⊗ − ⊗ ≥ ⊗

 
   ⊗ ⊗ − ⊗ ≥ ⊗  ⊗ ≥ ⊗  ≥ ⊗     −    

 

( )2 22 2

2 22 2

2

2 2 2
3 3 30 0

2 2

2 ˆ0 0 0
3 2 2

x xx x

x xx x
x

c c c c

c c c c
c

+ +
≥  ≥

+ +   
 ≥  ≥  ⊗ ≥   

   

  

(15)

 

A combination of the results from equations (14) and (15) shows that for all grey 
numbers

2
ˆ 3,xc⊗ ≥  the current optimal solution will remain unchanged. 

5.3. Change of a right-hand side value of a constraint ( )ib⊗  

Calculate the new right-hand side values as follows: 1 ,Gb B b−⊗ = ⊗ 1B− the matrix 
of technical coefficients of the slack variables in the optimal tableau, and 

G BZ C b⊗ = ⊗ ⊗   

To answer the question of to what extent 11 1,b b b ⊗ =    will remain unchanged in 

the current basic optimal solution, compute  
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[ ] [ ]

1

1 1
1 1

1 1

1 10 ,,3 3
1 13, 61 , 3, 6
3 3

G

G G

b B b

b bb b
b

b b

−⊗ = ⊗

    ⊗       ⊗   ⊗ = =   
 ⊗       − − ⊗ + ⊗      

 

The final tableau will be optimal if all the right-hand-side values are non-negative. 
Therefore, we have 

1 11 1 1
1 ˆ, 0 , 0 0
3 G Gb b b b b   ⊗ ≥ ⊗ ⊗ ≥ ⊗ ⊗ ≥     

[ ] [ ]1 11 1

11 1

1 1 1, 3, 6 , 3, 6 0
3 3 3

1 1 27ˆ3, 6 0
3 3 2

G G

G

b b b b

b b b

  − ⊗ + ⊗ ≥ ⊗° ⊗ − − + ⊗ ≥ ⊗    
  ⊗ − + − + ≥ ⊗  ⊗ ≤  

 

Therefore, as long as 1
27ˆ0
2

b≤ ⊗ ≤  is satisfied, the current basic variables in the 

optimal tableau will not change. That is, the condition of optimality is maintained. 
To answer the question of to what extent 22 2,b b b ⊗ =   of the current basic optimal 

solution will remain unchanged, we compute  

[ ] [ ]

[ ]

1

2 2
2 2

1 10 5,75,73 3
1 1,1 5,7 ,
3 3

G

G G

b B b

b
b b b b

−⊗ = ⊗

   ⊗ ⊗   
 ⊗ = =   

 ⊗         − − ⊗ + ⊗       

 

The final tableau will be optimal if all the right-hand side values are non-negative. 
That is, 

 [ ] 2 22 2 2
1 7 5 ˆ5, 7 , 0 , , 0 2
3 3 3

b b b b b    − ⊗ + ⊗ ≥ ⊗  ⊗ − − + ⊗ ≥ ⊗  ⊗ ≥     
 

Hence, as long as 2
ˆ 2b⊗ ≥  is satisfied, the current basic variables in the optimal 

tableau will not change. That is, the condition of optimality will be maintained.  
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6. Conclusion 

Uncertainty is an integral and inherent feature of problems encountered in social, 
economic, agricultural, educational, etc., areas. However, the decision systems estab-
lished to describe such systems makes them problematic. Therefore, to optimise real-
world problems that are highly inaccurate due to the limited availability of data and the 
limited amount of information and cannot be resolved by using theories of fuzzy sys-
tems and random systems, the theory of grey systems will come to the rescue. This 
theory is developed to deal with systems that contain uncertain and incomplete infor-
mation. To solve problems of GLP, different methods have been advanced. Some of 
these methods are developed by whitenising parameters to create additional infor-
mation, while others have to deal with complexity and place high demands on compu-
tational time due to the uncertainty involved. In this paper, by using concepts and theo-
rems of the theory of grey systems, we analyse the sensitivity of GLP model parameters, 
which enables us to find the intervals within which the optimal solution remains un-
changed. And we can practically reflect the uncertainty in the parameters of a GLP 
model in the obtained ranges. For further research, one can consider the sensitivity anal-
ysis of GLP for simultaneous changes of more than one parameter or a more general 
situation. 
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