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This paper discusses some game-theoretical methods for measuring indirect control in complex 
corporate shareholding networks. The methods use power indices to estimate the direct and indirect 
control in shareholding structures. Some of these methods only estimate the control power of investors 
(firms without shareholdings), and only a few measure the control power of all firms involved in share-
holding networks (which means investors and stock companies). None of them takes measuring the 
importance of mutual connections (edges in the networks) into consideration; thus we focus in particu-
lar on an extension of these methods in this paper to measure both the control-power of the firms in-
volved in complex shareholding structures (represented by nodes in networks) and the importance 
(power) of linkages between the firms as elements of a whole corporate shareholding network. More pre-
cisely, we apply our approaches to a theoretical example of a corporate network. Moreover, we continue 
the considerations about reasonable properties for indirect control measurement. Some ideas of new prop-
erties are proposed. The paper also provides a brief review of the literature concerning the topic. 
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1. Introduction 

Research on the power of different shareholders and (particularly) the importance of 
stakeholder groups for determining voting power was initiated by Berle and Means [4]. The 
game-theoretical approach to the measurement of the control power of firms in corpo-
rate networks dates back to 1994 when the first approach to this issue was proposed by 
Gambarelli and Owen [20]. Since then, a lot of research has proposed other methods. 
Among the numerous approaches, let us mention some that used power indices to meas-
ure the importance of firms in corporate shareholding networks: Turnovec [45], Hu and 
Shapley [21, 22], Leech [29], where an empirical analysis of the situation of minority 
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shareholders in UK companies is presented, then Crama and Leruth [11, 12], Karos and 
Peters [25], Mercik and Lobos [33], and Levy and Szafarz [30]. More on the applica-
tions and comparisons of some of these methods can be found in [6, 27, 34, 43].  

We would like to underline that the Karos and Peters’ [25], and Mercik and Lobos’ 
[33] methods provide indices that measure the power of all firms in corporate share-
holding networks (which means investors and stock companies). However, neither of 
these methods nor the others measure the importance of mutual connections (linkages 
in networks). Thus, we focus in particular on an extension of these methods in this paper 
to measure both the control-power of firms involved in complex shareholding structures 
(represented by nodes in networks) and the importance (power) of linkages between the 
firms as elements of a whole corporate shareholding network. More precisely, we apply 
our approaches to a theoretical example of a corporate network. Moreover, we continue 
the considerations [34] about the reasonable properties for indirect control measure-
ment. Some ideas of new properties are undertaken.  

The paper is structured as follows. Section 2 introduces the preliminary definitions 
and notations of cooperative game theory and power indices. In Section 3, we introduce 
our approach to measure the power of linkages in corporate networks by removing them 
from the networks; we then apply this method to a theoretical example of a corporate 
structure. In this scope, we extend the Karos and Peters [25] and Mercik and Lobos [33] 
indices as well as a modification of Mercik and Lobos (Mercik and Stach [34]) to meas-
ure the importance of linkages. In Section 4, we consider some desirable properties of 
indirect control measure (among these are some that refer to the addition/elimination of 
links in corporate networks). Finally, Section 5 concludes with some remarks. 

2. Preliminary definitions 

Let {1, 2, ..., }N n=  be a finite set of n players. Any subset S N⊆  is called a coali-
tion. A cooperative n-person game v is a function : 2 ,Nv R→  with ( ) 0,v ∅ =  defined 
on the family of all coalitions 2 ;N  ( )v S  denotes the worth of coalition S in v. A coop-
erative game v is monotonic if ( ) ( )v S v T≤  whenever .S T N⊂ ⊆  A simple game is 
a monotonic game : 2 {0,1}Nv →  such that ( ) 1;v N =  for all ,S N⊆  if ( ) 1v S = , coali-
tion S is called a wining coalition; otherwise, a coalition S with ( ) 0v S =  is called a losing 
coalition. A simple game ( , )N v  is said to be proper if and only if the following require-
ment is satisfied: for all ,T N⊆  if ( ) 1,v T =  then ( \ ) 0.v N T =  We only analyse the 
proper simple games where players can vote only yes–no (for more on a proper simple 
game, see [40], for example). A player i is critical (or a swing player, or decisive) in 
coalition S if S with i is winning and S without i is losing. A player who is not critical 
in any coalition (i.e., ( { }) ( )v S i v S∪ =  for \{ })S N i⊆ is called a null player, whereas 
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player i is called a dummy player in v if ( { }) ( ) ({ })v S i v S v i∪ − =  for all \{ }S N i⊆ . If 
coalition S has at least one critical player, then S is called a vulnerable (or sensitive) 
coalition. The collection of all vulnerable coalitions is denoted by VC, while VCi denotes 
the set of all vulnerable coalitions that contain player i. For each ,S VC∈  the inverse of 
the number of swing players in S, ( ),r S  is called the fractional swings for the coalition. 
For instance, if there are only two critical players in a coalition ,S VC∈  then ( )r S = 1/2. 
For each ,i S VC∈ ∈ we define 

( ) if  is critical in 
( )

0 otherwisei

r S i S
r S 

= 


 

A winning coalition S with all critical players is called a minimal winning coalition. 
For each player i in N, we denote the set of all coalitions in which i is critical by 

{ : ( ) 1 ( \{ }) 0}.i S N i S v S v S iη = ⊆ ∈ ∧ = ∧ =  
Let 1( , ..., )nw w  be a non-negative vector of weights of players in {1, ..., },N n=  and 

let q be a positive real number such that .
2

i
i

i N i N

ww q
∈ ∈

≥ >   Then the weighted majority 

game 1[ ; , ..., ]nq w w  is the simple game (N, v) defined as 

1 if 
( )

0 otherwise

i
i S

w q
v S ∈

 ≥= 



 

The symbol 1[ ; , ..., ]nq w w  is used as the representation of a weighted majority game 
with majority threshold q and weights 1, ..., nw w  that are ordered in a non-increasing 
sequence. When the weights are the voting rights owned in a stock company in a cor-
porate network, then we can use the concept of a weighted majority game to model the 
voting situations in this company. Note that, in this paper, voting rights mean voting 
shares; i.e., shares that give the stockholder the right to vote on corporate matters. Many 
companies also issue nonvoting shares. There are different classes of shares (e.g., com-
mon and preferred shares). All types of shares represent ownership in a company; how-
ever, they give different privileges. For example, common shares generally have voting 
rights, and most common shares give the holder one vote per each share owned (alt-
hough it does not always work out like this). On the other hand, preferred shares gener-
ally do not have voting rights. Some preferred stocks give one vote per share, while 
others grant more, fewer, or no voting rights at all1. This non-linearity often allows con-
trol of company operations without holding a qualified majority of shares. 

 _________________________  
1See [23] for example. 
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2.1. Classical power indices 

To measure the voting power of players in a simple game, the concepts of power 
indices are introduced. Generally, for every simple game v, a power index f assigns 
unique vector 1 2( ) ( ( ), ( ), ..., ( )),nf v f v f v f v=  where ( )if v  can be interpreted as a meas-
ure of the power of player i in simple game v. The best-known power index was intro-
duced by Shapley and Shubik [39]. The Shapley–Shubik index for simple game v and 
each i N∈  is given by 

( 1) !( ) !( )
!

i

i
S

s n sv
nη

σ
∈

− −=   

where s = |S|. (Here and hereafter, operator |·| denotes the cardinality of a finite set). For 
more information of σ, see [41], for example. 

The second best-known and used power index (the Banzhaf index) is proposed by 
Penrose [37] and Banzhaf [2]. This index is based on the concept of a swing player. 
Absolute Banzhaf power index β for simple game v and each i N∈  is defined as fol-
lows: 

1

| |( )
2

i
i nv ηβ −=  

whereas the relative version of the Banzhaf index ( )β ′ obtained by normalizing the β index 
so that the indices sum to one is defined as 

| |( )
| |
i

j
j

j N

v ηβ
η

∈

′ =


 

More on the Banzhaf indices can also be found in [7, 15], for example. 
The Johnston power index (J-power) [24] was introduced for simple game v and 

each i N∈  as follows: 

( )
( )

( )

i
S VC

i
j

j N S VC

r S
J v

r S
∈

∈ ∈

=


 
 for each i N∈  
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Since the Johnston index is not so frequently applied, we provide a simple example 
(also considered in [32]) to show the behavior of this index as compared to those com-
monly used in the Banzhaf and Shapley–Shubik indices. Let us consider the following 
example: Game [4; 3, 2, 1]; i.e., voting where there are three voters, {1, 2, 3}N = , each 
with 3, 2, and 1 votes, respectively. The majority needed for a decision is q = 4. Coali-
tions {1, 2}, {1, 3}, and {1, 2, 3} are vulnerable coalitions in this game (vulnerable 
coalitions must be winning coalitions). 

Table 1. Johnston power indices for game [4; 3, 2, 1]. Source: [32] 

Vulnerable 
coalitions 

Number 
of vulnerable 

coalitions 

Critical defections Fractional critical defections 
Player 1 
(3 votes) 

Player 2  
(2 votes) 

Player 3  
(1 vote) 

Player 1  
(3 votes) 

Player 2 
(2 votes) 

Player 3 
(1 vote) 

{1, 2} 1 1 1 0 1/2 1/2 0 
{1, 3} 1 1 0 1 1/2 0 1/2 
{1, 2, 3} 1 1 0 0 1 0 0 
Total 3 3 1 1 2 1/2 1/2 
Ji     4/6 1/6 1/6 

 

It is easy to notice that vector (4/6, 1/6, 1/6) of the J-power indices in this example 
differs from the vector of the relative Banzhaf power indices (3/5, 1/5, 1/5) and is equal 
to the vector of Shapley–Shubik power indices (4/6, 1/6, 1/6). Of course, the three power 
indices mentioned here are generally different and result from different axiomatic char-
acterisations. For a comparison and axiomatic characterisations of these as well as other 
indices, see [5], for example. 

2.2. Power indices for measuring power control in corporate networks 

Now, we define three indices introduced for measuring the power control of firms 
in shareholding structures.  

2.2.1. Karos and Peters approach 

Karos and Peters [25] propose index Φ  to measure the power of all firms in a corporate 
network. They model the indirect relations among firms using so called invariant mutual 
structure. Let N be a set of all firms in a corporate shareholding structure. The invariant 
mutual control structure C is a function which assigns to each coalition 2NS ∈  the set 
of all players (firms) controlled by S, such that 

•  ( ) ,C ∅ = ∅   
• ( ) ( )C S C T⊆ ) for all S T N⊆ ⊆  (monotonicity property),  
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• , , 2NR S T∀ ∈   with ( )S C T⊆   and ( )R C S T⊆ ∪   we have ( )R C T⊆   (indirect 
control property).  

Let C  be the set of all invariant mutual control structures based on N. For every 
C C∈  there is associated a vector of simple games Cv  (a simple game structure) where 
each simple game C

kv  indicates who controls the corresponding firm k N∈  for invariant 
mutual structure C, and ( ) 1C

kv S =  if k is controlled by S (i.e. ( );k C S∈  otherwise, 
( ) 0.C

kv S =  So, for each firm in a corporate shareholding network, there is a (monotonic) 
simple game whose winning coalitions are exactly those that control that firm. The Ka-
ros–Peters index is defined as follows: 

  ( ) ( ) ( )C C
i i k i

k N

v vC NΦ σ
∈

= −  for every i N∈  and C C∈  (1) 

where σ denotes the Shapley–Shubik index, ( )C
iv N  = 0 for every player i who is never 

needed by any coalition to exercise its control, and i is also not controlled by any 
coalition. These kind of players are called by Katos and Peters [25] null players.  

2.2.2. Mercik and Lobos approach 

The method employed by Mercik and Lobos [33] uses an adaptation of the Johnston 
power index in order to measure indirect control. This index is called the implicit index, 
and is based on the general assumption that the most commonly used power indices do 
not adequately describe the situation of “looping” relationships between the sharehold-
ers (individual and institutional) of individual companies (see [3, 16, 17, 33] for exam-
ple). Such “looping” entities and their shareholders are a complementary system exist-
ing in a kind of equilibrium in which any change in the volume of shares impacts not 
only the company itself but the entire system as such.  

In implicit index π, the calculations start with an analysis of the group of companies 
1, ..., ,mC C  2.m ≥  The group of shareholders of iC  may include both individual share-

holders and other companies. 

{ : 1, 2, ..., } { : {1, ..., } \{ }}i k i jC s k n c j m i= = ∪ ∈  

where ni denotes the cardinality of the group of individual investors2 in .iC  For con-
venience, if ks  and jc  represent the share volumes (in percentages) of individual and 
institutional shareholders represented in ,iC  then 

 _________________________  
2By investor we mean a firm that is not controlled by any firm in a corporate shareholding structure. 
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1 1
1

in m

k j
k j

s c
= =

+ =    

where 0,ks ≥  0.jc ≥  Using the definition of a winning coalition, coalition { } { }k js c∪  
is a winning coalition if  

1 1

in m

k j i
k j

j i

s c q
= =

≠

+ ≥   

where 0.5 1iq< ≤  is the cumulative volume of shares necessary to make a decision (as 
we mentioned, only proper games are analysed). Obviously, individual shareholders and 
institutional investors may be in swing (critical) positions, which makes it possible for 
coalition iC  to be vulnerable. Using sensitive coalitions in jth company ,jVC  one may 

calculate the absolute value of the Johnston index for each participant in coalition ji C∈  as 
well as for all of the coalition .iC  After normalisation, the respective values for a participant 
of the company and for the company in system 1 2, , ..., mC C C  is obtained. Then, for 
each non-individual participant of a coalition j ic C∈ , 1, ..., ,i m= every value of the 

power index assigned before jc  is divided equally among all shareholders. Subse-
quently, for each company (members of a system 1 2, , ..., )mC C C and for each share-
holder ,j ic C∈  the absolute value of the implicit power index is calculated by summing 
up the appropriate values in the entire system. Each of the so-calculated absolute values 
can be appropriately standardised to receive standardised implicit index iπ  for each firm 
i in a corporate network.  

This index takes values from a range of [0, 1]; the greater the power of a particular 
member of several coalitions, the closer the value of such a constructed index will be to 1. 
The implicit power index of each shareholder has properties and values analogous to 
a standard J-power index. 

2.2.3. Mercik and Stach approach 

Mercik and Stach [34] propose a modification of the implicit index, calling it a mod-
ified implicit index. Let us denote this index by π ′  here. The main difference between 
π  and π ′  lies in the calculation of power for the companies (i.e., non-individual par-
ticipants of coalitions j ic C∈ , 1, ..., ,i m=  2).m ≥  Precisely, the first step in calculating 

π ′  is the same as for the π  index: after taking into account all of the companies and 
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the vulnerable coalitions within these companies, the absolute Johnston index is calcu-
lated for all of the companies and investors. In the second step, there is a difference for 
the companies. For each company, we distribute the amount assigned in the first step to 
the companies that are among the shareholders of iC  proportionally to the absolute 
Johnston power index distribution given in the first step instead of dividing this amount 
equally among its shareholders. Then, the third and last step is the same as for index π; 
i.e., index π ′  is calculated for each firm by summing up the appropriate values in the 
entire system. After this, the standardisation is made for the companies and investors 
separately. This modification provides that the π ′ index avoids the assignment of posi-
tive power to null players, i.e., investors that are not critical in any vulnerable coalition.  

3. Measurement of control power of mutual connections  
in corporate networks 

In this section, we propose an idea how to evaluate the power of mutual connections 
(linkages) in corporate shareholding structures. As the edges do not exist separately 
without the nodes in a network, we propose measuring the power of linkages using the 
changes in the power of the nodes. More precisely, our proposition is to assign the power 
equal to the difference of the power values calculated for firm i to a linkage that starts 
in firm i before and after removing this linkage from the corporate network. In order to 
assess the value of a linkage, we calculate the pre- and post-elimination distributions of 
power for the firms (marginal values). We can calculate the distribution of power among 
the firms in the corporate shareholding structures using the Karos–Peters, Mercik–Lo-
bos, or modified Mercik–Lobos indices (for example).  

Some postulates for the good measure of the power (importance) of the linkages in 
the corporate shareholding network are as follows: 

• We assume that the graph is directed. This means that the cross-shareholdings are 
presents by two connections and not one3. 

• We would like to have symmetric measurement. This means that we would like 
a measure that satisfies the symmetry (or anonymity) postulate that states that a link-
age’s power value should not depend on its name for the arcs in the corporate networks. 
In other words, let us consider all directed paths in a network to which two linkages 
belong if the corresponding sets of the directed paths for the two linkages are symmet-
rical (i.e., paths that have equal linkages with equal voting rights), then the power value 

 _________________________  
3The assumption about only one or (maximally) two connections between two nodes in a corporate 

network can be violated in certain cases, as when we would like introduce other characteristics about the 
relationships between the firms in corporate networks. Forlicz et al. [18] propose the Shapley value for such 
multigraphs. 
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of these two linkages should be equal. Therefore, the “symmetric” linkages should have 
equal power. 

• We would like to have a measure that assigns null power to linkage (i, j) that does 
not bring changes in power to firm i. 

If we consider a measure of the firms’ indirect control that satisfies the null player 
property (which states that a null player should obtained nothing) and, as a consequence, 
the null-player removable property4 (like the Karos–Peters or modified Mercik–Lobos 
methods, for example), then eliminating the linkages that start in the firms that are null 
players does not change the power of the rest of the firms in the network. So, the im-
portance (power) of these linkages should be null.  

Let us provide a formal definition of a measure of the power of linkages in a corpo-
rate network that can be seen as an extension of the measures of control power of firms 
in corporate networks. Let ( , )M N L  be a corporate network with at least two firms 
(| | 2)N ≥  and at least one linkage | | 1L ≥  (N denotes a set of all firms, and L is a set of 
all links in network ( , )).M N L ) Let (i, j) be a linkage in network M, which starts in firm i 
and finishes in firm j, .i j≠  If we remove linkage (i, j) from M, we obtain new network 

( , \ ( , )).M M N L i j′ =  Let  f  be a power index that assigns the real number interpreted 
as the power of firm i to each in the entire network ( , ).M N L  The measure of linkage (i, j) 
is defined as follows: 

( , ) ( ) ( ) ( )i j i if M f M f M ′= −  

Example 1a. Let us consider a theoretical example of a corporate network used in 
[34, 43] (Fig. 1). We regard a simple majority rule to measure the control power of firms 
in this example, i.e., q = (50% of a company’s voting rights + 1). The numbers on the 
links describe the voting rights (in percentages). For example, we have 90% on link (7, 4), 
which means that firm 7 has 90% of the voting rights in company 4.  

Example 1b. Let us consider a modified theoretical example of a corporate network 
used in Example 1a. Namely, we delete the direct link (7, 4) designed by a dotted line 
in Fig. 1. In this way, we get a new network that differs only from that of Example 1a 
in having one less linkage, i.e., linkage (7, 4). As previously, we regard a simple major-
ity rule to measure the control power of firms in this example.  

Taking into account the direct and indirect control in Examples 1a (with link (7, 4)) 
and 1b (without link (7, 4)) of the theoretical corporate structure, we find the sets of all 

 _________________________  
4The null player removable postulate states that, after eliminating the null players from a game, the 

non-null players’ measures of power remain unchanged (see [14] or [42], for example). 
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minimal winning coalitions for all companies (Table 2). Then, considering only the di-
rect control in companies 1, 2, 3, 4, and 5, we find the sets of vulnerable coalitions that 
are necessary for calculating implicit indices π  and π ′  in both examples (see also  
Table 2).  

 
Fig. 1. Corporate shareholding network with 13 firms. Source: [34] 

Table 2. Minimal winning and vulnerable coalitions in Examples 1a and 1b 

Company/ 
Example 

Minimal winning coalitions 
considering direct and indirect control 

Vulnerable coalitions considering only direct 
control. Critical players are underscored 

1/1a 

{2, 3}, {2, 4}, {2, 6}, {2, 7}, {3, 7, 9},  
{3, 7, 11}, {3, 7, 13}, {5, 7}, {6, 7},  

{7, 10}, {7, 12}, {3, 10, 12}, {3, 5, 10},  
{3, 4, 9}, {3, 4, 11}, {3, 4, 13},  

{4, 5, 10}, {5, 6, 10}, {6, 10, 12} 

{2, 3}, {2, 4}, {2, 3, 4}, {2, 3, 9},  
{2, 3, 11}, {2, 3, 13}, {2, 4, 9}, {2, 4, 11}, 
 {2, 4, 13}, {3, 4, 9}, {3, 4, 11}, {3, 4, 13}, 
{2, 3, 9, 11}, {2, 3, 9, 13}, {2, 3, 11, 13}, 
 {2, 4, 9, 11}, {2, 4, 9, 13}, {2, 4, 11, 13}, 

 {3, 4, 9, 11}, {3, 4, 9, 13},  
{3, 4, 11, 13}, {2, 3, 9, 11, 13},  

{2, 4, 9, 11, 13}, {3, 4, 9, 11, 13} 
1/1b 

{2, 3}, {2, 4}, {2, 6}, {2, 7}, {5, 7},  
{6, 7}, {7, 10}, {7, 12}, {3, 10, 12},  

{3, 5, 10}, {3, 4, 9}, {3, 4, 11}, {3, 4, 13}, 
{4, 5, 10}, {5, 6, 10}, {6, 10, 12} 

2/1a  
and 2/1b 

{5, 7}, {5, 10}, {6, 7}, {7, 10}, 
{7, 12}, {3, 10, 12}, {6, 10, 12} 

{5, 7}, {5, 10}, { 7, 10}, {4, 5, 7), {4, 5, 10), 
 {4, 7, 10}, {5, 6, 7}, {5, 6, 10}, {6, 7, 10},  

{4, 5, 6, 7}, {4, 5, 6, 10}, {4, 6, 7, 10} 
3/1a and 

3/1b 
{2, 6}, {2, 7}, {5, 7}, {6, 7}, {7, 10}, 

{7, 12}, {5, 6, 10}, {6, 10, 12} {2, 6}, {2, 7}, {6, 7} 

4/1a  {7}, {1, 7}, {7, 8}, {7, 11}, {1, 7, 8},  
{1, 7, 11}, {7, 8, 11}, {1, 7, 8, 11} 4/1b {7} 

5/1a 
and 5/1b {3, 12}, {6, 12}, {6, 7}, {7, 12} {3, 12}, {6, 12}, {7, 12}, {3, 6, 7},  

{3, 6, 12}, {3, 7, 12}, {6, 7, 12} 
 
The sets of minimal winning coalitions in Example 1b are a bit different from those 

in Example 1a (with linkage (7, 4)). The differences in sets of minimal winning coali-
tions are noted for companies 1 and 4. Precisely, coalitions {3, 7, 9}, {3, 7, 11}, and {3, 
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7, 13} become losing in the game that refers to company 1, and coalition {7} becomes 
losing in the game that refers to company 4 (Table 2). For the rest of the companies (i.e., 
companies 2, 3, and 5), the sets of minimal winning coalitions remain the same as in the 
network with link (7, 4). 

Table 3. Absolute and standardised values of implicit power index π in Example 1a 

Investor 
Company Absolute index 

of investor 

Standardised 
index  

of investor 1 2 3 4 5 

6 4.1333 1.0000 1.2000  1.1111 7.4444 0.1668 
7 5.8833 5.0000 1.2000 8.0000 1.1111 21.1944 0.4748 
8 1.7500     1.7500 0.0392 
9 0.3333     0.3333 0.0075 
10 1.8000 4.0000 0.2000   6.0000 0.1344 
11 2.0833     2.0833 0.0467 
12  1.0000   4.5000 5.5000 0.1232 
13 0.3333     0.3333 0.0075 

Absolute index 
of company 16.3167 11.0000 2.6000 8.0000 6.7222 1607/36  

Standardised index 
of company 0.3655 0.2464 0.0582 0.1792 0.1506   

Table 4. Calculations of Φ index in Example 1a 

Firm 
Power distribution in accordance with σ index in a simple game vi 
i = 1 i = 2 i = 3 i = 4 i = 5 i = 6–13 Total Φ 

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 –1.000 
2 0.196 0.000 0.133 0.000 0.000 0.000 0.329 –0.671 
3 0.121 0.017 0.000 0.000 0.083 0.000 0.221 –0.779 
4 0.098 0.000 0.000 0.000 0.000 0.000 0.098 0. 902 
5 0.056 0.150 0.050 0.000 0.000 0.000 0.256 –0.744 
6 0.096 0.067 0.250 0.000 0.250 0.000 0.662 0.662 
7 0.265 0.400 0.433 1.000 0.250 0.000 2.348 2.348 
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
9 0.010 0.000 0.000 0.000 0.000 0.000 0.010 0.010 

10 0.092 0.267 0.083 0.000 0.000 0.000 0.442 0.442 
11 0.010 0.000 0.000 0.000 0.000 0.000 0.010 0.010 
12 0.047 0.100 0.050 0.000 0.417 0.000 0.613 0.613 
13 0.010 0.000 0.000 0.000 0.000 0.000 0.010 0.010 

 
Now, let us calculate the power of linkage (7, 4). For this purpose, we have to cal-

culate the power of firm 7 in the whole corporate network pre- and post-elimination of 
link (7, 4), i.e., in Examples 1a and 1b. Of course, elimination of linkage (i, j) from the 
network changes the network, including decreasing total number of voting rights in 
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company i. However, we assume that the sum of the shares in each company node is not 
necessarily equal to 100%. This means that some shares can be dispersed in an ocean of 
small shareholders. In Tables 3 and 4, we calculate the power of all firms in Example 1a, 
i.e., in the example of a corporate network with linkage (7, 4) using the Mercik–Lobos 
and the Karos–Peters approaches, respectively. For this purpose, the sets of minimal 
winning coalitions for all companies (1, 2, 3, 4, 5) that take direct and indirect control 
into account and the sets of vulnerable coalitions that consider only direct control are 
shown in Table 2. 

Namely, the standardised implicit index of thirteen firms in Example 1a is (0.3655, 
0.2464, 0.0582, 0.1792, 0.1506, 0.1668, 0.4748, 0.0392, 0.0075, 0.1344, 0.0467, 
0.1232, 0.0075), while the Φ index is equal to (–1, –0.671, –0.779, –0.902, –0.744, 
0.662, 2.348, 0, 0.01, 0.442, 0.01, 0.613, 0.01), see Tables 3 and 4.  

Now, let us consider Example 1b. The elimination of linkage (7, 4) changes the sets 
of minimal-winning coalitions for companies 1 and 4 (as mentioned above). Precisely, 
coalitions {3, 7, 9}, {3, 7, 11}, and {3, 7, 13} become losing in the game that refers to 
company 1, and coalition {7} becomes losing in the game that refers to company 4 
(Table 2). For the rest of the companies (i.e., companies 2, 3, and 5), the sets of minimal 
winning coalitions remain the same as in the network with link (7, 4). More precisely, 
company 4 is not controlled anymore. Regarding company 1, three minimal winning 
coalitions (i.e., coalitions {3, 7, 9}, {3, 7, 11}, and {3, 7, 13}) become losing coalitions. 
Thus, if we take the Karos–Peters index into consideration to calculate the power of the 
firms in our example, the elimination of linkage (7, 4) mostly influences a change in the 
power of firms 3 and 7, as these firms belongs to all of the three minimal-winning coa-
litions mentioned above. Subsequently, the power of firms 9, 11, and 13 will also 
change. 

Table 5. Calculations of Φ index in Example 1b 

Firm 
Power distribution in accordance with σ index in a simple game vi 
i = 1 i = 2 i = 3 i = 4 i = 5 i = 6–13 Total Φ 

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 
2 0.200 0.000 0.133 0.000 0.000 0.000 0.333 -0.667 
3 0.112 0.017 0.000 0.000 0.083 0.000 0.212 -0.788 
4 0.102 0.000 0.000 0.000 0.000 0.000 0.102 0.102 
5 0.060 0.150 0.050 0.000 0.000 0.000 0.26 -0.74 
6 0.100 0.067 0.250 0.000 0.250 0.000 0.667 0.667 
7 0.256 0.400 0.433 0.000 0.250 0.000 1.339 1.339 
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
9 0.008 0.000 0.000 0.000 0.000 0.000 0.008 0.008 

10 0.096 0.267 0.083 0.000 0.000 0.000 0.446 0.446 
11 0.008 0.000 0.000 0.000 0.000 0.000 0.008 0.008 
12 0.051 0.100 0.050 0.000 0.417 0.000 0.618 0.618 
13 0.008 0.000 0.000 0.000 0.000 0.000 0.008 0.008 
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Note that company 4 is not controlled by any firm in the network in Example 1b; 
therefore, it is not controlled by set of all firms (N) either. Thus, using the definition of 
index ,iΦ  we have 4 ( ) 0.v N =  All other companies (i.e., companies 1, 2, 3, and 5) are 
controlled by N, so ( ) 1iv N =  for 1, 2, 3, 5.i =  Then, firms 6, 7, 8, 9, 10, 11, 12, and 13 
are not controlled by any firm by definition, as they are investors. Thus, we have 

( ) 0iv S =  for each S N⊆  and each i = 6, 7, 8, 9, 10, 11, 12, 13. Table 5 shows the 
calculations of the Φ index in our example with link (7, 4) eliminated (Example 1b). 

The last column in Table 5 gives the Φ index for all firms; thus, we can see that the 
power of firm 7 decreased after the elimination of link (7, 4). In Example 1b, we find 
the power of firm 7 is equal to 1.339, according to the Karos–Peters index. In the orig-
inal network (with link (7, 4)), the power of firm 7 was 2.348, (Tables 4 and 5). Thus, 
following our idea and the Karos–Peters index, the power of linkage (7, 4) may be esti-
mated as follows: 

( )(7,4) 7 7 2.348 1.339 1.009( ) ( ) ( )M M MΦ Φ Φ ′ =− == −  

where M ʹ denotes the corporate network in Example 1b, whereas M  denotes the 
network with link (7, 4) added. The power of linkage (7, 4) calculated in this way 

(7,4)( 1.009)( )MΦ = is an absolute value. After the calculations of power made for all 
linkages, we can standardise these values.  

Table 6. Absolute and standardised values of implicit power index π in Example 1b 

Investor Company Absolute index 
of investor 

Standardised index 
 of investor 1 2 3 4 5 

6 4.1333 1.0000 1.2000  1.1111 7.4444 0.2032 
7 5.8833 5.0000 1.2000  1.1111 13.1944 0.3601 
8 1.7500     1.7500 0.0478 
9 0.3333     0.3333 0.0091 
10 1.8000 4.0000 0.2000   6.0000 0.1638 
11 2.0833     2.0833 0.0569 
12  1.0000   4.5000 5.5000 0.1501 
13 0.3333     0.3333 0.0091 

Absolute index 
of company 16.3167 11.0000 2.6000 0 6.7222 1319/36  

Standardised index 
of company 0.4453 0.3000 0.0710 0 0.1835   

 
Now, we assess the value of linkage (7, 4), applying the Mercik and Lobos π  index. 

The elimination of linkage (7, 4) does not change the sets of vulnerable coalitions for 
all companies except for company 4. In network M (with linkage (7, 4), Example 1a), 
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firm 7 is critical in the following eight vulnerable coalitions: {7}, {1, 7}, {7, 8}, {7, 11}, 
{1, 7, 8}, {1, 7, 11}, {7, 8, 11}, and {1, 7, 8, 11} (Table 2), which become losing coa-
litions in company 4 after the elimination of linkage (7, 4). In Table 6, we provide the 
calculations of index π in Example 1b, i.e., in network ( , \{7, 4}).M M N L′ =  

The power control of Investor 7 pre-elimination of link (7, 4) is equal to 0.4748 
(Table 3); after elimination, this is equal to 0.3601 (Table 6). Hence, the power of link-
age (7, 4) in whole network is as follows (according to our approach and the Mercik 
–Lobos index):  

(7,4) 7 7( ) ( ) ( )M M Mπ π π ′= − = 0.4748 0.3601 0.1147− =  

Now, let us assess the importance of link (7, 4), using modified implicit index π ʹ. 
Table 7 shows all calculations of π ʹ in Example 1a, i.e., for the network presented in 
Fig, 1 with linkage (7, 4), which indicates that firm 7 holds 90% of the voting rights in 
firm 4.  

Table 7. Absolute and standardised values of π′  in Example 1a (network with linkage (7, 4)) 

Investor Company Absolute index 
of investor 

Standardised index  
of investor 1 2 3 4 5 

6 2.3333 0.4762 1   1.11111 4.9206 0.0999 
7 12.3333 4.4762 1.33333 8.0000 1.11111 27.2540 0.5591 
8          0.0000 0.0000 
9 0.3333        0.3333 0.0069 

10 3.0000 4.0000 0.33333    7.3333 0.1508 
11 0.3333        0.3333 0.0069 
12   2.5714     4.5000 7.0714 0.1696 
13 0.3333         0.3333 0.0069 

Absolute  
index 
of company 

18.6667 11.5238 2.6667 8.0000 6.7222 47.5794  

Standardised 
index  
of company 

0.3923 0.2422 0.0560 0.1681 0.1413   

 
Table 8 provides the calculations of the π ʹ index in Example 1b, where link (7, 4) 

is not present. 
Based on the calculations of index π ʹ in Tables 7 and 8, we can assess the power of 

linkage (7, 4) in the whole network. Namely, the power of linkage (7, 4) is as follows 
(according to our approach and modified index π ′ ):  

(7, 4) 7 7( ) ( ) ( )M M Mπ π π′ ′ ′ ′= − = 60.5591 0.486 0. 25 07− =  
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Table 8. Absolute and standardised values of π′ in Example 1b (network without link (7, 4)) 

Investor Company Absolute index 
of investor 

Standardised index  
of investor 1 2 3 4 5 

6 2.3333 0.4762 1   1.11111 4.9206 0.1243 
7 12.3333 4.4762 1.33333  1.11111 19.2540 0.4865 
8          0.0000 0.0000 
9 0.3333        0.3333 0.0084 

10 3.0000 4.0000 0.33333    7.3333 0.1853 
11 0.3333        0.3333 0.0084 
12   2.5714     4.5000 7.0714 0.1787 
13 0.3333         0.3333 0.0084 

Absolute 
index 
of company 

18.6667 11.5238 2.6667 0.0000 6.7222 4987/126  

Standardised 
index  
of company 

0.4716 0.2912 0.0674 0.0000 0.1698   

 
Hence, the π ′ index assesses the importance of linkage (7, 4) being lower in power 

than the very similar power index π ; even π ′  estimates the power of firm 7 to be greater 
than π in both cases of the corporate network with and without linkage (7, 4). Of course, 
a more adequate way to compare the results would be to use standardised values of the 
powers of the linkages.  

Since firm 8 is a null player in the weighted game that refers to company 4, it is not 
difficult to assess the power of linkage (8, 4). The elimination of linkage (8, 4) from the 
network regarded in our example (network M with linkage (7, 4)) changes neither the 
set of minimal winning coalitions nor the sets of vulnerable coalitions for all companies. 
So, the power of link (8, 4) should be null, according to our approach as well as the Φ  
and π ʹ indices. 

(8, 4) 8 8 (8, 4) 8 8( ) ( ) ( ) ( ) ( ) ( ) 0 0 0M M M M M MΦ Φ Φ π π π′ ′ ′ ′ ′= − = = − = − =  

Regarding implicit index π, the power of linkage (8, 4) is not null. Firm 8 (being an 
investor in company 4, which, in turn, is a shareholder of companies 1 and 2) is an 
indirect shareholder of companies 1 and 2. According to the π index, the amounts as-
signed to company 4 are equally divided among its shareholders during its partial cal-
culations for all firms. Therefore, this implies that firm 8 has non-null power in M due 
to the π  index; see Table 3. The elimination of linkage (8, 4) from network M implies 
that firm 8 becomes an isolated node in network ( , \{8, 4})M M N L′ =  with null power. 
Thus, the power of linkage (8, 4) in network ( , )M N L  is positive and equals the fol-
lowing: 
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(8, 4) 8 8( ) ( ) ( )M M Mπ π π ′= − = 0.0392 ‒ 0 = 0.0392 

The measure of the linkages in the corporate shareholding structures proposed in 
this way (i.e., as the extension of firm control power measure f ) should maintain the 
majority of the characteristics of power index f.  

4. On reasonable properties for indirect control measure 

Many scholars focused their attention on the desirable properties of power indices in 
different contexts, including Bertini et al. [5], Bertini and Stach [8], Stach [42], Álvarez-
Mozos et al. [1], Freixas et al. [19], Felsenthal and Machover [17], and Laruelle [28], for 
example. One of the interesting questions about the measurement of the indirect control 
of firms and mutual connections in a whole corporate network structure is this: which 
properties should be met by a good measure (power index) in the context of indirect 
control. 

As mentioned in Section 1, there are various approaches to measure the indirect 
control power of firms. We particularly concentrate on the approaches proposed by Karos 
and Peters in [25] (the Φ index), Mercik and Lobos in [33] (the implicit π index), and the 
modification of the latter (implicit index π ′ ) proposed by Mercik and Stach [34]; these are 
formally described in Section 2. All of these approaches measure the control power of 
each firm (investors as well as companies) in a whole corporate network. There is also 
another approach by Levy and Szafarz [30], which considers the power of all firms. 
However, the last approach calculates the power of each firm in a target company (for 
all targeted possible companies in a network) and not in the whole corporate sharehold-
ing structure. 

Among various methods of measuring the indirect control power of firms in corpo-
rate networks, only the approach by Karos and Peters [25] starts from a group of prop-
erties and arrived at one index. Namely, they regard the anonymity, null player, transfer, 
constant-sum, and control player properties. As modifications of the Johnston power 
index [24], the implicit power indices (π and π ʹ) have properties and values that are 
analogous to the standard J-power index. Let us remember some properties that are sat-
isfied by the J-power index: dominance, efficiency, null player, non-negativity, and 
symmetry properties (see [5], for example). Taking into account the procedure of cal-
culating the π index, we deduce that π does not satisfy the null player property (this 
could be seen in Examples 1a and 1b for example (Section 3). For this reason, a modi-
fication of the Mercik–Lobos index was proposed to satisfy the null player property (the 
π ʹ index) in [34]. Still, a more in-depth comparison of these two indices (π and π ʹ) was 
made in [34]. 
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Mercik and Stach [34] review some available properties of the power indices and 
reformulate some of them in the context of indirect control. Among the standard prop-
erties of the power indices are symmetry, null player, efficiency, and non-negativity 
properties. The bloc, dominance, donation, and null player removable properties also 
seem inescapable in an indirect control context. In [34], we propose some formulations 
of the last five properties mentioned. Here, we would like to revise these formulations 
and try to improve them as related to measuring the control power of firms both “inside” 
a company and in a relationship with the “surroundings”. In this paper, we regard only 
the indices that measure the importance of all nodes (firms) in the corporate networks; 
namely, the Φ, π, and π ʹ indices. All that is new that we know about these power indices 
and five properties are reported below. 

Bloc property. If two firms merge, then the new firm should not have less control 
power than each of the previous firms. This means that the power of the new firm (also 
in the new corporate network, which changed due to the merger) is greater than or equal 
to the maximum power of these two firms in the original network. Let us consider this 
property inside a company. This means that a merger between firms is realised only 
between the direct investors of the companies that are not stock companies. Then, the 
Karos–Peters index should satisfy this property, as the Shapley–Shubik index satisfies 
the bloc property in weighted majority games (see [5], for example). However, concern-
ing the π and π ʹ indices, these do not satisfy the bloc property, as the J-index does not 
fulfil this property in weighted majority games (see [5], for example). 

Dominance property. Let us consider a corporate network in which two firms are 
almost in the same position. This means they are controlled by the same firms with the 
same numbers of voting rights (if any) and have the same number of voting rights in the 
same companies except one, where one of the considered firms has more voting rights 
than the other. Then, a firm with a larger block of voting rights cannot receive less con-
trol power in the whole network than a firm with a smaller block of voting rights. When 
we regard this property inside a company and for shareholders of the same category 
(both investors or both companies), all of the indices considered here (namely, Φ, π, 
and π ʹ) should satisfy this property, as the Shapley–Shubik and Johnston indices satisfy 
it in weighted majority games.  

Donation property. In a corporate structure, a firm that donates its voting rights to 
another firm should not increase its control power. If the donation property concerns 
only the relationships within a company (a transfer of shares between the investors of 
the same company), the changes in the weights of the players (firms) concern only 
a weighted majority game associated with this company. The Shapley–Shubik index 
fulfils the donation property in weighted majority games (see [5], for example); thus, 
the Φ index should also fulfil it. An investor donating a part (or all) of its voting rights 
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does not increase its control power according to the σ  index in this company. Then, as 
its voting rights in other companies do not change, its power in other companies cannot 
increase; as a consequence, it should not increase the control power in the entire system. 
The Johnston index does not fulfil the donation property in weighted majority games 
(see [5], for example). So, in theory, an investor may increase its control power by trans-
ferring a part of its voting rights to another investor; as a result, having the same amount 
of voting rights in other companies effectively increases its control power in the entire 
network. Hence, the π and π ʹ indices (which are the modification of the J-index) do not 
satisfy this property. 

Null player removable property. The null player removable property states that, 
after removing the null firms (i.e., those firms whose voting rights cannot transform any 
losing coalition into a winning one), the non-null firms’ measures of control power 
should remain unchanged. The π index does not satisfy this property, as can be seen in 
Examples 1a and 1b (where the null player (firm 8) receives non-null power). Still, in 
[34], we propose a modification of the Mercik–Lobos index (denoted here byπ ′ ) to 
satisfy the null player property. Thus, the Karos–Peters Φ (which satisfies the null 
player property) and modified implicit π ʹ indices satisfy this property. 

We propose new properties for indirect measures for both contexts: inside a com-
pany, and outside as related to a whole network. 

The quarrelling property. A firm involved in a quarrel should not increase its 
power. This property refers to situations when two quarrelling firms do not agree on 
a particular vote, for example; as a result, they will not cooperate and, consequently, 
will not form a coalition (and they also cannot take part in any coalition together). Thus, 
their coalition ability decreases; as a consequence, their power in an entire corporate 
network should not increase.  

For the first time, the quarrelling property (for power indices and simple games) 
was formulated by Kilgour [26]; it was then studied and discussed by other scholars, 
such as Brams [10], Nevison [36], Deegan and Packel [13], Straffin [44], and Felsenthal 
and Machover [16]. The Shapley–Shubik and Banzhaf indices do not fulfil this property 
in simple games (see [10] for example). In the context of indirect control and corporate 
networks, this property requires new definitions of power indices in a quarrelling game. 
So, the issue of satisfying this property in both cases (inside a company and in a whole 
network) by regarding indices remains an open problem at the moment. 

The fairness property. The effect of the link addition was introduced in commu-
nication graph games by Myerson [35], who proposed the axiom of fairness. This, along 
with so-called component efficiency, characterises the Myerson value [35]. This prop-
erty states that deleting an undirected communication link between two players should 
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have the same effect on their respective payoffs. Using the terminology of indirect con-
trol in corporate networks, this property could mean that deleting cross-holding between 
two firms should have the same effect on their control power (of course, only if the 
voting rights assigned to the two related directed links are the same).  

Example 2. Let us consider a corporate shareholding network presented in Fig. 2a. 
Deleting a cross-holding between companies 3 and 4, we obtain the network in Fig. 2b. 
In this example of two shareholdings networks, we can observe a violation of the 
fairness property by considered indices for measuring power control in corporate net- 
works in this paper. 

  

Fig. 2. Corporate shareholding network (a) and the same network 
with deleted cross-holding between companies 3 and 4 (b) 

Namely, comparing the powers assigned by the three indices (Φ, π, and π ʹ) to firms 
3 and 4 in Table 9, we can see that all indices fail the fairness property. 

Table 9. Distributions of power for networks 
 shown in Fig. 2 

Network Index 
Investor Company 

1 2 3 4 

Fig. 2a 

Φi 1 –5/6 1/6 –2/6 

πi 1 1/7 0 6/7 

iπ ′  1 1/4 0 3/4 

Fig. 2b 
Φi 5/6 –4/6 0 –1/6 
,i iπ π ′  1 1/2 0 1/2 

 
Reviewing the literature on the topic, we find three other properties that refer to the 

measuring control power of player and link additions in corporate networks. Namely, 
Peters et al. [38] consider the following three properties of power indices in invariant 
digraphs. A direct graph (digraph) is called invariant if there is a linkage between any 
two nodes between which a directed path also exists. 

a) b) 
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Link addition 1 property. If player j becomes additionally controlled by some 
player i, then this should not change the power of the players who were already control-
ling j. According to Peters et al. [38], this property is satisfied by multiples of the 
Copeland score; i.e., a one-parameter family of power indices of the following form:  
c (the power of player i is equal to the number of players controlled by player i minus 
the number of players controlling player i), where c is a real number. 

Link addition 2 property. If player j becomes additionally controlled by some 
player i, then this should not change the power of player j. This property is satisfied by 
multiples of the β-measure [47, 48]. 

Link addition 3 property. This axiom states that, if we add a link from player i to 
player j, then both should have the same gain or loss in power. This property is satisfied 
by multiples of the apex-measure [46].  

The Φ, π, and π ʹ indices fail these three link addition properties presented above in 
this very general form. These can be demonstrated in simple examples of corporate net-
works (see Examples 3, 4 and Figs. 3, 4). 

  
Fig. 3. Network of a simple corporate shareholding structure composed of four firms:  
three companies (firms 2, 3, and 4), and one investor (firm 1) (a), the same network  

modified by adding a linkage and one firm (b)  

Example 3. Figure 3a shows the network of a simple corporate shareholding structure 
composed of four firms: three companies (firms 2, 3, and 4), and one investor (firm 1).  
For this case, the Φ, π, and π ʹ indices are calculated in Table 10. The network presented 
in Fig. 3b is a modification of the network given in Figure 3a by adding a linkage and 
one firm (firm 5). In this way, we obtain a new structure composed of three companies 
(firms 2, 3, and 4) and two investors (firms 1 and 5). For the network given in Fig. 3b, 
the Φ, π, and π ʹ indices are calculated in Table 11. 

Table 10. Distributions of power for a network shown in Fig. 3a 

Index Investor Company 
1 2 3 4 

iΦ  2/3 2/3 –2/3 –2/3 

,π iπ ′  1 0 1/2 1/2 

a) b) 
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Table 11. Distributions of power for a network shown in Fig. 3b 

Index 
Investor Company 

1 5 2 3 4 
iΦ  16/30 41/30 –19/30 –19/30 –19/30 

,π iπ ′  11/20 9/20 6/20 7/20 7/20 
 
Comparing the powers assigned by the indices Φ, π, and π ʹ to firms 1 and 2 in Tables 10 

and 11, we can see that all three indices fail the link addition 1 and 2 properties. 

  
Fig. 4. Network composed of four firms: two companies and two investors (a) 

and the same network with one investor (firm 1) and three companies (firms 2–4) (b) 

Example 4. Figure 4a shows a network composed of four firms: two companies and 
two investors. For this case, the Φ, π, and π ʹ indices are calculated in Table 12. Adding 
the linkage (1, 2) to the network in Fig. 4a, we obtain the network with one investor 
(firm 1) and three companies (firms 2, 3, and 4) presented in Fig. 4b.  

Table 12. Distributions of power for a network given in Fig. 4a 

Index 
Investor Company 

1 2 3 4 
iΦ  2/3 2/3 –2/3 –2/3 

,π iπ ′  1/2 1/2 1/2 1/2 
 
For the network in Figure 4b, the Φ, π, and π ʹ indices are calculated in Table 13. 

Table 13. Distributions of power for a network given in Fig. 4b 

Index 
Investor Company 

1 2 3 4 
iΦ  13/6 –1/2 –5/6 –5/6 

,π iπ ′  1 3/17 7/17 7/17 
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Comparing the values of the powers assigned to firms 1 and 2 by the Φ, π, and π ʹ 
indices in Tables 12 and 13, we see that both firms have a different gain or loss in power 
due to the addition of linkage (1, 2). Thus, the Φ, π, and π ʹ indices do not satisfy the 
link addition 3 property. 

In our example (Fig. 3), we not only add a link (linkage (5, 2)), but also a node (firm 5). 
Therefore, when we consider efficient power indices, it is obvious that the addition of 
a non-null player (firm) changes the distribution of power to satisfy the efficiency prop-
erty. This means that the change in power can result not only from adding a linkage but 
(above all) as the consequence of one more non-null player and the efficiency of the 
power measure. Thus, it is our opinion that the three properties in this formulation (link 
additions 1, 2, and 3) are not adequate for the standardised measures of control power 
in corporate shareholding structures. In fact, Peters et al. [38] consider these properties 
in the characterisation of a class of power indices (for invariant digraphs) based on four 
axioms: null player, constant sum, anonymity, and transfer properties. 

5. Concluding remarks 

The issue of measuring the indirect control power of the firms in complex corporate 
shareholding networks is of great interest to different researchers. In the literature on 
this topic, there are various approaches to measuring the power of the firms. Here, we 
were only interested in game theoretical approaches – particularly those that measure 
the power of all firms in whole corporate networks using power indices; i.e., the Karos 
and Peters [25], Mercik and Lobos [33], and modified Mercik and Lobos (Mercik and 
Stach, [34]) approaches. Indirect control in corporate shareholding networks is realised 
by directed linkages. The links reflect the relationships between firms in corporate net-
works. Two firms can be connected in a network in different ways, using direct or indi-
rect links. From our point of view, it is interesting to have a method to measure the 
importance of mutual connections in corporate structures. 

In this paper, we propose an approach to measure the importance (power) of the 
linkages (see Section 3). The method requires the adaptation of the existing methods to 
measure the power of all firms in corporate networks. Having the chosen method (thus, 
also having the distribution of power for all firms calculated by this method), we esti-
mate the power of a linkage as the difference between the power of the firms where the 
linkages originate and the power of the same firm in a modified network (i.e., a network 
from which this connection was eliminated). In this way, we extend three indices (Φ, π, 
and π ʹ) to measure the linkages’ power. 

Then, we continue the discussion started in [34] on the reasonable requirements for 
the indirect control measure of firms in corporate shareholding networks; in particular, 
we focus on the properties that refer to mutual connections (see Sect. 4). One further 
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development may be the considerations on the desirable properties of the measures of 
linkages in corporate structures. 

One idea for further development could be extensions of existing methods (the Ka-
ros–Peters or Mercik and Lobos, for example) to power indices with pre-coalitions, 
which would be important in a more thorough analysis of the control power of firms 
and their mutual connections. 

Moreover, measuring the importance of linkages by a leaving-one-out approach with-
out considering the interactions of a link with the different coalitions that can form the 
other links is not completely comprehensive. As a further development, a game theoretical 
approach following the ideas of the arc game and the position value for communication 
situations introduced by Meessen [31] and Borm et al. [9] could be interesting. 
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