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Data envelopment analysis (DEA) is a well-known method that based on inputs and outputs cal-
culates the efficiency of decision-making units (DMUs). Comparing the efficiency and ranking of 
DMUs in different periods lets the decision-makers prevent any loss in the productivity of units and 
improve the production planning. Despite the merits of DEA models, they are not able to forecast the 
efficiency of future periods with known input/output records of the DMUs. With this end in view, this 
study aims at proposing a forecasting algorithm with a 95% confidence interval to generate fuzzy data 
sets for future periods. Moreover, managers’ opinions are inserted in the proposed forecasting model. 
Equipped with the forecasted data sets and concerning the data sets from earlier periods, this model can 
rightly forecast the efficiency of the future periods. The proposed procedure also employs the simple 
geometric mean to discriminate between efficient units. Examples from a real case including 20 auto-
mobile firms show the applicability of the proposed algorithm. 
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1. Introduction 

Data envelopment analysis (DEA) is concerned with the comparative assessments 
of the efficiency of decision-making units (DMUs). In the classical DEA models, the 
efficiency of a DMU is assessed by maximizing the ratio of the weighted sum of its 
outputs to the weighted sum of its inputs, provided that this ratio does not exceed 1 for 
any of the DMUs. Since the pioneering works of Charnes et al. [6] and Banker et al. [2], 
DEA has demonstrated to be an effective technique for measuring the relative efficiency 
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of a set of homogeneous DMUs that utilize the same inputs to produce the same outputs. 
While the assumption of certain and crisp data is not acceptable in real-world DEA 
contributions, fuzzy data sets are employed in the efficiency analyses. Moreover, in 
DEA-related contexts, studies have been conducted in which fuzzy measures have been 
incorporated. 

The concept of fuzzy was first introduced by Zadeh [32, 33]. He also introduced the 
possibility hypothesis in modelling conditions that face uncertainty. The concept of fuzzy 
random variables was first used by Kwakernaak et al. [15, 16] to represent circumstances 
in which there are simultaneous fuzzy and coincidental phenomena. Charnes et al. [4] 
introduced meaningful programming of constraints that establish every constraint at a 
significant level such as α. Land et al. [17] developed a DEA model in this type of pro-
gramming to calculate the efficiency of units with deterministic inputs and random outputs. 
Other references that use the fuzzy concept in DEA literature are Olesen and Petersen [23], 
Kao and Liu [14], Saati et al. [25], and Lertworasirikul et al. [18]. 

Despite the widespread applicability of DEA, some authors criticize it for a number 
of its weaknesses. The first drawback relates to the discrimination power of standard 
DEA models. Standard DEA models divide units into efficient and inefficient units but 
cannot discriminate between efficient units. Scholarly references to this are Anderson 
and Peterson [1], Sexton et al. [26], Doyle et al. [7, 8], and Liang et al. [21, 22], all 
assuming real inputs and outputs in their models. Wang et al. [29] suggested two models 
for calculating the fuzzy efficiency of units. Among them, Wang ranked the units based 
on fuzzy arithmetic. Hosseinzadeh et al. [12] and Jahanshahloo et al. [13] considered 
different aspects in ranking units. Wang and Chin [30] proposed a fuzzy expected value 
DEA approach with fuzzy inputs and outputs. They first weighted the input/output 
measures. And then the expected values were used to measure the optimistic and pessi-
mistic efficiencies of DMUs in fuzzy contexts. Finally, the two efficiencies were geo-
metrically averaged for ranking and identifying the best performing DMUs. 

The second flaw of standard DEA models relates to the utilization and analyses of 
previous data. In other words, the DEA standard models fail in forecasting the future 
and can only evaluate the efficiency concerning earlier data. Various papers focused on 
this forecasting procedure, employing linear programming and DEA techniques (cf., [34, 
11, 3, 10, 31, 19, 20, 9, 27, 24, 28] for further discussions on this issue). The main issue 
in these works is concerned with the ignorance of decision-makers opinions. These 
works provoked a question in real-world applications of the DEA models which is the 
concern of the current paper too. It reads as “what would happen if the role of managers 
were inserted in the forecasting procedure?”. 

In today’s competitive world, managers must think over various factors including 
the dynamics of the environmental factors, resource consumption, and output produc-
tion. Moreover, they must rely on information about the due date when the units under 
review would pass this period. Admittedly, the obtained results, based on the past data, 
cannot lead to desirable outcomes. Moreover, generalizations of the results do not allow 
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the managers to adjust the production activities in terms of resources and production. 
Hence, managers involve their viewpoints in their evaluations that can seriously affect 
the final results, meaning that such issues employ managers’ opinions as fuzzy value 
effects. 

The main contribution of this paper is its focus on uncertain fuzzy data to introduce 
managers’ viewpoints in the production process. Concerning the historical data along 
with decision-maker viewpoints, the efficiency of the units can be forecasted with the 
aid of the proposed model of the current paper. 

Another point that was argued in this paper is confidence. To have trustable results, 
this paper claims a confidence interval of efficiency. A 95% confidence interval for 
input/output measures was reached with an alternative algorithm proposed here. 
Equipped with the manager’s arguments and confidence interval of the data sets, the 
efficiency is forecasted. The expected efficiencies for future periods prompt ranking and 
discriminating procedure. The paper employs Wang and Chin’s [30] fuzzy DEA models 
to have both pessimistic and benevolent efficiencies. The mean of these efficiencies can 
rank and compare the units. In the end, a real case of 20 automobile firms utilizing the 
last 49 periods supports the suggested approach of this paper. 

With this end in view, the paper is organized as follows. Section 2 briefly introduces 
the fuzzy model proposed by Wang and Chin [30]. Section 3 describes the proposed 
algorithm including the algorithm for forecasting the efficiency confidence interval. 
A real case including numerical examples is presented in Section 4. Finally, conclusions 
are provided in Section 5. 

2. Preliminaries. Wang and Chin’s (2011) Fuzzy Model 

Fuzzy DEA models are used to calculate the efficiency of DMUs with fuzzy data. Sup-
pose there are n  DMUs ( )1, ...,jDMU j n; =  that use m inputs  ( ),ij

L M N U
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where,  ( ),L M N U
r r r r ru u u u u= , , and ( ),L M N U

i i i i iv v v v v= , ,  are the weights of inputs and 
outputs, respectively. However, the authors claimed that the efficiency of units can be 
evaluated as an interval. The upper bound of this interval efficiency is called the opti-
mistic view of evaluation and the lower bound of the interval is called the pessimistic 
estimate. First, the upper bound of the efficiency is calculated. The efficiency of the 
lower evaluated unit, that is, can be determined from the optimistic point of DMUo view. 
The model is called the benevolent model and has the following format: 
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As is seen above, the model is a fractional programming model that measures the 
best relative performance of .oDMU  Applying Charnes et al. [5] transformation, the 
above fractional programming model can be converted into the following linear pro-
gramming model: 
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As is seen in the model, if the optimal solution of the model (3) is equal to unity, 
that is best 1,o oDMUθ = is called an optimistic efficient; otherwise, it is optimistic ineffi-
cient. Similar to the benevolent model, the following fractional programming model can 
evaluate fuzzy data sets from the pessimistic perspective: 
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Model (4) is called a pessimistic model that measures the worst performance of 
DMUo relative to the other DMUs. Charnes et al. [5] transformation converts model (4) 
to the following linear programming model: 
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As the model shows, if the optimal solution of the model (5) is equal to unity, that 
is worst 1,o oDMUθ =  is called pessimistic inefficient; otherwise, it will be called pessimis-
tic efficient. The interval efficiency for a fuzzy DMU can be defined as worst best, .j jθ θ    

In order to measure the overall efficiency of the units, the geometric average ( )geometric
jθ

can be defined as  
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 geometric best worst = , 1, ...,j j j j nθ θ θ =  (6) 

The obtained geometric
jθ can also be used for ranking and comparing the units. 

3. The proposed approach 

As mentioned before, the earlier fuzzy DEA research studies have ignored this im-
portant factor in their modelling. Not only does the proposed approach of the current 
paper emphasize the decision-maker views, but it also tends to bring out logical results. 
This is because such results can provide managers with reliable conditions to justify 
their future decisions in terms of resource consumptions and production. The alternative 
contribution of this proposed approach is generating a 95% confidence interval for pre-
vious data sets, meaning that the probability assumption is utilized in such anticipations. 
Figure 1 shows the pattern of the proposed approach. 

( ) ( )Prob [%] Prob [%]l u l u
io io io ro ro rox x x k y y y k

oDMU   ∈ = ∈ =   ⎯⎯⎯⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯⎯⎯⎯→   

Fig. 1. The proposed pattern 

As Figure 1 demonstrates, the ith component of the input vector for oDMU  meets 
the interval ,L U

io iox x    with the possibility of K%.  Similarly, the rth component of the 

output vector is inserted in the interval ,L U
ro roy y    with the K%  possibility, meaning 

that with the possibility of (1 – K)%, the data will not be recorded in the interval. The 
significant difference in this pattern is its possibility axioms that are used for the uncer-
tain fuzzy data set. In most cases, the confidence level K is equal to 95%. Based on the 
pattern in Fig. 1, the following model is applied for forecasting the interval efficiency 
while the confidence level is set at 95%: 
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In the above model, l u
ij ij ijI x x =    and l u

rj rj rjI y y =    are the K% confidence in-

tervals of the inputs and outputs of ,l u
ij ij ijI x x =   respectively. By replacing DMUj 

and l u
rj rj rjI y y =   , the model has the following format: 
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As model (7) shows, the inputs and output vectors are inserted in an interval with 
the possibility of K%. Model (7) is introduced for interval data. With the aim of the 
model (7), the suggested approach can be employed for fuzzy data sets (the objective of 
this paper). The main argument is emphasizing on previous data. That is, the data sets 
for Nth period are set in the confidence interval using the historical data of 1N −  peri-
ods. Moreover, the historical data are employed to generate trapezoidal fuzzy data. With 
this end in view, an algorithm is proposed with four steps as follows. 

4. Confidence interval algorithm 

Step 1. Determine confidence interval α for Nth period by ITSM software with 
1N −  inputs and outputs of the previous period for n DMUs. To reach a reliable out-

come, α was set as K%. As this step, the purpose is to forecast the future based on 
available data with the least possible error. Therefore, we remove the data flow, stabilize 
the variance with the aid of available transformations, identify the initial model, and 
finally forecast the α = K% confidence interval for inputs and outputs. 

Step 2. Impose management opinion on inputs and outputs concerning experience, 
expertise, familiarity with the workplace, performance, and history of units. 

Step 3. Share confidence interval for inputs and outputs of step 1 with a confidence 
interval for step 2. 

Step 4. Calculate mean x  and standard deviation σ of previous 1N −  period of 
units. Then calculate 3x σ±  to convert the input and output to trapezoidal fuzzy data. 
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The above algorithm provides a confidence interval for uncertain inputs or outputs 
with the confidence of α = K%. After this step, concerning these intervals, the next step 
deals with efficiency evaluation. In this step, an interval efficiency is considered. There-
fore, applying the optimistic and pessimistic models can simplify the procedure. The 
proposed algorithm has four steps for forecasting efficiency. The steps are listed below. 

5. Efficiency and ranking algorithm 

Step 1. Use the optimistic and pessimistic models (3) and (5) to have an interval 
efficiency. The best and worst efficiencies are needed for the Nth period. 

Step 2. Calculate the real efficiency of the Nth period. To validate the future pe-
riod’s efficiency and compare the calculated efficiency with real efficiency in the Nth 
period, the rank sum test is calculated as follows: 
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 (9) 

where m denotes the number of first group efficiency scores or the efficiency with real 
data and n denotes the number of second efficiency scores, that is, the scores of step 1 
with available data from the previous algorithm (available fuzzy data). The statistic(s) 
approximately follows the normal distribution with a mean value of m(m + n + 1)/2 and 
variance of mn(m + n + 1)/12. 

Step 3. If the model is validated, use the efficiency forecast for the 1N +  period. 
Step 4. Apply equation (6) for the ranking of units. 

The proposed method looks simple to follow. As the algorithms show, the confi-
dence intervals are generated. Moreover, future data sets can be inserted in an interval 
with K% confidence. This confidence allows the managers to focus on their production 
procedure. This way, the decision-makers are satisfied since their perspectives would 
lead to these desirable results. Based on these reliable results, the efficiency for Nth 
period is calculated. This outcome is trustable, and the production procedure can be 
justified with K% confidence. Furthermore, a validation test is done until the calculated 
efficiency is compared. Above all, the proposed algorithm lets ranking efficient units 
just with a simple geometric mean. In what follows, a numerical real case supports the 
proposed method of the current paper. 
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6. Numerical example 

To evaluate the applicability of the proposed algorithm, the automobile industry, as 
one of the main industries in Iran is selected. Identifying the determining and influential 
factors can affect the efficiency or inefficiency of this industry. Some of these factors 
include the conditions of the businesses, certain strategies, paying attention to research 
and development, the required liquidity and budget, and having a realistic vision ac-
cording to the capabilities. Moreover, if there is no control and realistic vision about the 
future performance of this industry, the industry will face various challenges. Therefore, 
forecasting the future performance of this industry can play an important role in pre-
venting loss and decreasing risks in financial and human resources. Thus, management 
can make a long-term plan for its performance and design plans for improving the man-
agement of the expenses and enhancement of efficiency. 

As a practical example for the evaluation of the proposed model, 20 automobile 
industries were selected. The inputs and outputs were collected seasonally. They related 
to 50 time periods. The inputs were the number of personnel ( )1x  and number of equip-

ment ( )2 .x  The outputs included value added ( )1y  and average employee productivity

( )2 .y  As the proposed confidence interval algorithm suggests, a four-step algorithm 
provides a confidence interval as follows: 

Step 1. Inputs and outputs of previous 49 periods of these 20 industrial units along 
with α = 95% were used to provide the inputs and outputs of the 50th period. The ob-
tained confidence interval for inputs and outputs were inserted with the aid of the ITSM 
software. These steps were repeated for all inputs and outputs for 20 industrial units. 
For example, assume the first input of DMU5. The initial data are shown in Table 1 and 
Fig. 2 as follows. 

Table 1. The first input of DMU5 for 49 periods of 20 DMUs 

Step 10 Step 9 Step 8 Step 7 Step 6 Step 5 Step 4 Step 3 Step 2 Step 1 
90.69 86.15 83.55 89.72 90.02 81.35 90.29 88.07 87.63 88.06 

Step 20 Step 19 Step 18 Step 17 Step 16 Step 15 Step 14 Step 13 Step 12 Step 11 
91.2 85.61 89.57 83.16 91.45 80.92 87.57 80.7 83.22 86.47 

Step 30 Step 29 Step 28 Step 27 Step 26 Step 25 Step 24 Step 23 Step 22 Step 21 
89.19 86.25 90.5 85.23 87.23 90.67 89.74 83.96 82.94 89.12 

Step 40 Step 39 Step 38 Step 37 Step 36 Step 35 Step 34 Step 33 Step 32 Step 31 
86.16 88.97 87.13 85.19 82.26 87.27 90.8 88.82 86.62 86.9 

Step 50 Step 49 Step 48 Step 47 Step 46 Step 45 Step 44 Step 43 Step 42 Step 41 
 80.06 88.13 87.27 91.03 87.29 83.2 80.44 84.22 89.74 87.7 
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Fig. 2. Graphical representation of Table 1 

By reducing the scattering and differentiation of the data for unit #5, Fig. 3 is de-
rived. 

 
Fig. 3. Decreasing dispersion and differentiating in first input of DMU5 

Subsequently, the applied software makes data fit with an appropriate model to fore-
cast inputs and outputs for the 50th period. After determining the appropriate model 
based on the available data, inputs and outputs were forecasted with the desirable pos-
sibility at a 95% confidence interval. Figure 4 shows the results. 
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Fig. 4. Forecasting 50th to 59th periods for the first input of DMU5 

Table 2 shows the related resulted of forecasting 95% confidence interval for the 
inputs and outputs of the 50th–59th periods for the first input of DMU5. 

Table 2. Results of forecasting 50th–59th periods for the first input of DMU 

Approximate 95% prediction bounds 
Prediction Step 

Upper Lower 
90.23 76.42 83.04 50 
95.78 79.85 87.45 51 
92.74 77.28 84.66 52 
98.33 80.91 89.20 53 
101.72 82.45 91.58 54 
96.47 77.09 86.24 55 
93.06 73.39 82.64 56 
97.19 75.68 85.77 57 
102.93 79.19 90.28 58 
108.92 82.39 94.46 59 

 
The first step of the confidence algorithm process is done for all units, and results 

are presented in Table 3. 
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Table 3. Forecasting the confidence interval of 95% of inputs and outputs 

DMUi I1 I2 O1 O2 

DMU1 [76.4 103.55] [60.28 80.70] [37.48 51.00] [47.62 76.63] 
DMU2 [78.11 98.89] [57.68 78.23] [40.59 55.28 [49.28 80.59] 
DMU3 [72.17 88.84] [71.13 92.70] [40.59 55.38] [45.56 64.63] 
DMU4 [80.52 103.85] [71.57 99.79] [38.82 52.35] [37.00 55.78] 
DMU5 [76.42 90.23] [60.90 86.53] [34.68 46.52] [45.93 65.63] 
DMU6 [72.88 95.80] [61.95 81.05] [40.95 62.11] [47.64 69.58] 
DMU7 [84.24 98.68] [70.34 92.48] [43.38 55.62] [44.16 68.91] 
DMU8 [82.21 98.06] [63.41 95.10] [44.90 61.53] [42.95 65.59] 
DMU9 [82.15 101.91] [71.69 105.61] [37.74 53.19] [35.64 57.92] 
DMU10 [82.73 101.48] [83.69 1121.43] [39.59 51.91] [40.85 63.69] 
DMU11 [83.19 99.42] [71.95 102.52] [37.2 50.98] [31.42 55.29] 
DMU12 [75.46 93.44] [69.37 95.91] [39.71 63.52] [38.98 57.01] 
DMU13 [72.18 90.48] [71.30 90.09] [43.02 59.88] [50.87 81.03] 
DMU14 [76.50 96.92] [57.68 81.76] [27.91 48.83] [44.53 63.99] 
DMU15 [79.88 100.39] [61.46 84.79] [38.66 54.05] [45.33 68.69] 
DMU16 [75.94 93.02] [57.74 79.56] [40.55 53.98] [50.57 72.96] 
DMU17 [74.65 93.15] [73.73 97.53] [32.83 44.94] [46.83 73.92] 
DMU18 [74.36 88.89] [66.86 91.21] [39.36 52.45] [47.98 80.81] 
DMU19 [83.12 104.39] [64.18 88.25] [40.83 61.70] [40.38 62.24] 
DMU20 [74.93 91.92] [61.84 83.21] [40.31 58.21] [43.19 68.37] 

 
Coming to step 2 of the confidence interval algorithm and imposing management 

opinions on inputs and outputs, the obtained results are shown in Table 4. 
 

Table 4. Inputs and outputs by applying management feedback 

DMUi I1 I2 O1 O2 

DMU1 [72.35 88.42] [78.25 86.48] [45.66 49.47] [48.99 62.35] 
DMU2 [78.33 91.95] [75.91 85.59] [38.38 42.40] 43.85 56.95 
DMU3 [77.55 92.87] [77.88 89.60] [40.42 45.58] [44.97 59.61] 
DMU4 [78.57 92.23] [74.60 84.12] [42.24 50.58] [42.71 57.77] 
DMU5 [79.32 96.94] [74.44 82.04] [41.71 44.27] [45.28 55.34] 
DMU6 [77.52 89.18] [75.90 87.32] [41.88 50.16] [42.79 56.71] 
DMU7 [78.06 86.20] [65.71 75.59] [41.91 50.19] [49.33 60.29] 
DMU8 [83.22 93.84] [63.45 77.55] [47.28 52.24] [49.65 60.67] 
DMU9 [84.03 91.03] [74.28 80.46] [38.72 44.54] [51.02 59.88] 
DMU10 [78.06 95.40] [70.83 83.13] [41.35 44.79] [49.77 60.81] 
DMU11 [80.65 87.37] [64.45 75.65] [44.96 47.74] [45.00 54.98] 
DMU12 [78.85 87.15] [69.01 77.81] [44.29 50.95] [53.25 62.51] 
DMU13 [79.61 93.45] [74.84 82.75] [42.81 51.27] [51.05 62.39] 
DMU14 [83.20 95.72] [76.36 84.38] [42.41 46.65] [43.00 53.62] 
DMU15 [73.35 89.65] [75.37 88.47] [39.98 44.18] [48.77 58.41] 
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Table 4. Inputs and outputs by applying management feedback 

DMUi I1 I2 O1 O2 

DMU16 [79.75 91.75] [69.19 76.47] [44.20 46.92] [53.74 63.08] 
DMU17 [78.36 86.60] [77.90 87.84] [44.63 51.33] [42.67 50.09] 
DMU18 [80.16 92.22] [73.99 81.77] [41.91 51.51] [44.73 53.57] 
DMU19 [82.70 91.40] [76.40 82.76] [44.07 48.69] [47.11 59.95] 
DMU20 [78.60 88.62] [69.30 75.06] [43.42 50.96] [48.31 59.03] 

 
In the following step (step 3), the confidence interval for inputs and outputs of  step 1 

is shared with a confidence interval of  step 2. The shared inputs and outputs of the 50th 
period are depicted in Table 5. 

Table 5. 95% confidence interval, inputs and outputs for the 50th period 

DMUi I1 I2 O1 O2 

DMU1 [76.48 88.42] [78.25 80.70] [45.66 49.47] [48.99 62.35] 
DMU2 [78.33 91.95] [75.91 78.23] [40.59 42.40] [49.28 56.95] 
DMU3 [77.55 88.84] [77.88 89.60] [40.59 45.58] [45.56 59.61] 
DMU4 [80.52 92.23] [74.60 84.12] [42.24 50.58] 42.71 55.78 
DMU5 [79.32 90.23] [74.44 82.04] [41.71 44.27] [45.93 55.34] 
DMU6 [77.52 89.18] [75.90 81.05] [41.88 50.16] [47.64 56.71] 
DMU7 [78.06 86.28] [70.34 75.59] [43.38 50.19] [49.33 60.29] 
DMU8 [83.22 93.84] [63.45 77.55] [47.27 52.24] [49.65 60.67] 
DMU9 [84.03 91.03] [74.28 80.46] [33.72 44.54] [51.02 57.92] 
DMU10 [82.73 95.40] [70.83 83.13] [41.35 44.79] [49.77 60.81] 
DMU11 [83.19 87.37] [71.95 75.65] [44.96 47.74] [45.00 54.98] 
DMU12 [78.85 87.15] [69.37 77.81] [44.29 50.95] [53.25 57.01] 
DMU13 [79.61 90.48] [74.87 82.75] [43.02 51.27] [51.01 62.39] 
DMU14 []83,20 95.72 [76.36 81.76] [42.41 46.65] [44.53 53.62] 
DMU15 [79.88 89.65] [75.37 84.79] [39.98 44.18] [48.77 58.41] 
DMU16 [79.75 91.75] [69.19 76.47] [44.20 46.92] [53.74 63.08] 
DMU17 [78.36 86.60] [77.90 87.84] [44.63 44.94] [46.83 50.09] 
DMU18 [80.16 88.89] [73.99 81.77] [41.91 51.21] [47.98 53.57] 
DMU19 [83.12 91.40] [76.40 82.76] [44.07 48.69] [47.11 59.95] 
DMU20 [78.60 88.62] [69.30 75.06] [43.42 50.96] [48.31 59.03] 

 
The last step in the first algorithm is converting the data set into trapezoidal fuzzy 

data. Calculating the mean x  and standard deviation σ  of the previous 49 periods of 
units and utilizing 3x σ±  can convert the input and output to trapezoidal fuzzy data. 

The vectors ( )1 1 1 1 1, , , ,L M N Ux x x x x=  ( )2 2 2 2 2, , , ,L M N Ux x x x x=  ( )1 1 1 1 1, , ,L M N Uy y y y y=

and 1
Mx  and 1

Nx are fuzzy inputs and outputs. The components ( )2 2 2 2 2, , ,L M N Uy y y y y= are 
the lower and upper bounds of the first inputs of DMUs. As the third step of the confidence 
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algorithm indicates, these values are sharing forecasted quantities for the 50th-period and 
possess the confidence interval including the managers’ opinions. 

Table 6. Fuzzy inputs and outputs 

DMUj 1 1 1 1, , ,L M N Ux x x x   2 2 2 2, , ,L M N Ux x x x  1 1 1 1, , ,L M N Uy y y y  2 2 2 2, , ,L M N Uy y y y  

DMU1 
(70.39, 76.48, 
88.42, 94.51 

(66.66, 78,25, 
80.70, 92.28 

39.07, 45.66, 
49.47, 56,05 

42.68, 48.99 
62.33, 68.66 

DMU2 (76.20, 78.33, 
91.95, 94.08 

(63.21, 75.91, 
78.23, 90.93) 

(31.96, 40.59, 
42.40, 51.04) 

(39.40, 49.28, 
56.95, 66.82) 

DMU3 73.93, 77.55, 
88.84, 92.47) 

(72,19, 77.88, 
89.60, 95.29) 

(35.58, 40.59, 
45.58, 50.58) 

(39.26, 45.56, 
59.61, 65.90) 

DMU4 (75.19, 80.52, 
92.23, 97.57) 

(67.09, 74.60, 
84.12, 91.63) 

(38.61, 42.24, 
50.58, 54.21) 

(35.79, 42.71, 
55.78, 62.25) 

DMU5 (75.57, 79.33, 
90.23, 93.99) 

(64.50, 74.44, 
82.04, 91.98) 

(34.05, 41.71, 
44.27, 51.93) 

(36.80, 45.93, 
55.34, 64.46) 

DMU6 (72.79, 77.52, 
89.18, 93.91) 

(65.06, 75.90, 
81.05, 91.88) 

(36.57, 41.88, 
50.16, 55.47) 

(39.33, 47.64, 
56.71, 65.01) 

DMU7 (70.71, 78.06, 
86.26, 89.61) 

(61.53, 70.34, 
75.59, 84.39) 

(38.02, 43.38, 
50.19, 55.54) 

(41.88, 49.33, 
60.29, 67.74) 

DMU8 (77.49, 83.22, 
93.84, 99.57) 

(56.67, 63.45, 
77.55, 84.33) 

(41.21, 47.28, 
52.24, 58.31) 

(43.07, 49.65, 
60.67, 67.25) 

DMU9 (76.16, 84.03, 
91.03, 98.9) 

(63.81, 74.28, 
80.46, 90.87) 

(29.98, 33.72, 
44.54, 48.28) 

(41.78, 51.02, 
57.92, 67.16) 

DMU10 78.50, 82.73, 
95.40, 99.62 

(62.43, 70.83, 
83.13, 91.53) 

(35.12, 41.35, 
44.79, 51.02) 

(41.97, 49.77, 
60.81, 68.61) 

DMU11 (75.68, 83.19,  
87.37, 94.88)  

(59.37, 71.95, 
75,65, 88.23) 

(37.50, 44.96, 
47.74, 55.20) 

(35.89, 45.00, 
54.98, 64.09) 

DMU12 (72.74, 78,85, 
87.15, 93.26) 

(61.38, 69.37, 
77.81, 85.80) 

(38.14, 44.29, 
50.95, 57.10) 

(42.89, 53.25, 
57.01, 67.37) 

DMU13 (74.78, 79.61, 
90.48, 95.30) 

(65.94, 74.87, 
82.75, 91.68) 

(38.61, 43.02, 
51.27, 55.67) 

(44.21, 51.05, 
62.39, 69.23) 

DMU14 (78.42, 83.20, 
95.72, 100.3) 

(66.16, 76.36, 
81.76, 91.96) 

(34.69, 42.41, 
46.65, 54.37) 

(35.69, 44.53, 
63.62, 62.45) 

DMU15 (73.54, 79.88, 
89.65, 95.98) 

(66.43, 75.13, 
84.79, 93.73) 

(33.86, 39.98, 
44.18, 50.30) 

(41.56, 48.77, 
58.41, 65.62) 

DMU16 (76.21, 79.75, 
91.75, 95.29) 

(58.79, 69.19, 
76.47, 86.87) 

(37.16, 44.20, 
46.92, 53.96) 

(48.85, 53.74, 
63.08, 71.97) 

DMU17 (72.58, 78.36, 
86.69, 92.38) 

(71.08, 77.90, 
87.84, 94.66) 

(35.30, 44.63, 
44.94, 54.26) 

(36.70, 46.83, 
50.09, 60.22) 

DMU18 (72.40, 80.16,  
88.89, 94.84) 

(64.68, 73.99, 
81.77, 91.08) 

(37.80, 41.91, 
51.21, 55.32) 

(36.58, 49.98, 
53.57, 64.96) 

DMU19 (76.79, 83.12, 
91.40, 97.73) 

(67.61, 76.40, 
82.76, 91.55) 

(38.16, 44.07, 
48.69, 54.60) 

(41.65, 47.11, 
59.95, 65.41) 

DMU20 (72.27, 78.60, 
88.62, 94.95) 

(59.01, 69.30, 
75.06, 85.35) 

(38.55, 43.42, 
50.96, 55.83) 

(42.12, 48.31, 
59.03, 65.22) 
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The remaining two bounds, and 1
Lx  and 3 ,x σ±   1

Ux , are obtained by calculating 

1
Ux holding it for all obtained y inputs and outputs. For example, in Table 4, the first 

interval input for DMU1 is [ ]76.48 88.42 . Calculating the quantities such as mean 
82.45x =  and variance 4.02σ =  for the previous 49 periods and imposing 3 ,x σ±  the 

trapezoidal fuzzy interval for DMU1 is obtained as (70.39, 76.48, 88.42, 94.51). Repeat-
ing the first algorithm for all previous 49 periods, the trapezoidal fuzzy data for 20 units 
will result. Equipped with these confidence data, with the confidence level 95% includ-
ing the perspective of managers, we turn to the efficiency evaluation process whereby 
the second algorithm, efficiency evaluation algorithm, is now implemented to forecast 
the efficiency of DMUs with available fuzzy data. By implementing  step 1 of the pro-
posed algorithm, the results are presented in Table 7.  

Table 7. Efficiency of 50th period with fuzzy data and real data set  

DMUj θTRFN-50 θreal-50 DMUj θTRFN-50 θreal-50 

DMU1 1 0.8847 DMU11 0.9638 0.9801 
DMU2 0.9401 0.9717 DMU12 1 0.9416 
DMU3 0.9587 0.9751 DMU13 0.9781 0.9932 
DMU4 0.9321 0.8828 DMU14 0.8920 0.8828 
DMU5 0.9148 1 DMU15 0.9626 1 
DMU6 0.9731 0.9431 DMU16 1 0.9291 
DMU7 1 0.9222 DMU17 0.9581 0.9615 
DMU8 1 1 DMU18 0.9687 0.9353 
DMU9 0.9188 1 DMU19 0.9247 1 
DMU10 0.9216 0.8143 DMU20 0.9957 0.9463 

 
As the first step in the second algorithm states, models (5) and (7) were introduced 

for efficiency evaluation. The first column of Table 7  shows the efficiency forecast for 
the 50th period (θTRFN-50) employing the available trapezoidal data of Table 6. The sec-
ond column ( )real-50θ forecasts the real efficiency for the 50th period. The following step 
of the algorithm, step 2, performs the rank-sum test to determine the validity of the 
method. In the rank-sum test equation, m is the number of the first group ( )eal-50 ,rθ  and 
n denotes the number of the second group data ( )TRFN-50 .θ  Also, the statistic s approxi-
mately follows the normal distribution with the mean value of m(m + n + 1)/2 and var-
iance of of mn(m + n + 1)/12. The result of the sum-rank test for available fuzzy data 
set in Table 6 is 0.528 1.96T = > − . This number suggests that there is not any statisti-
cally significant difference between the forecasted efficiency with models (5) and (7) 
and real efficiency of the 50th period. By conducting step 3, the efficiency of period 
T = 51 is forecasted, and the results are presented in Table 8. 
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As Table 8 shows, the efficiency can be forecasted for the 51st period with a confi-
dence level of 95%, employing the available trapezoidal fuzzy data set in Table 6. The 
second column of Table 8 denotes the real efficiency scores of the 50th period. The 
forecasted efficiency scores indicate that units 5, 9, and 19 are listed as efficient units 
with the probability of 95% in the 51st period. Moreover, unit #13 preserves its effi-
ciency score in the following period. 

Table 8. Efficiency forecast of 51st period with fuzzy data  

DMUj 
Prediction 

51stfor the  
period 

Real efficiency 
of the 50th 

period 

DMUj 
Prediction 

stfor the 51  
period 

Real efficiency 
of the 50th 

period 
DMU1 0.8067 0.8847 DMU11 1 0.9801 
DMU2 1 0.9717 DMU12 0.9267 0.9416 
DMU3 0.9714 0.9751 DMU13 0.8675 0.9932 
DMU4 0.7751 0.8828 DMU14 0.8910 0.8828 
DMU5 1 1 DMU15 0.9137 1 
DMU6 0.9269 0.9431 DMU16 0.8315 0.9291 
DMU7 0.8414 0.9222 DMU17 1 0.9615 
DMU8 0.9343 1 DMU18 0.9428 0.9353 
DMU9 0.9978 1 DMU19 1 1 
DMU10 0.8409 0.8143 DMU20 0.8912 0.9463 

 
As can be seen, the efficiency score of unit  #4 has been decreased about 10%. The 

forecasted efficiency for the 51st period is 0.7751, but the real efficiency score in the 
previous period becomes 0.88. The same situation holds true for unit #13 whereby the 
quantity of the decrement gets close to 12%. Executing step 4 makes a ranking for fuzzy 
DMUs in the 51st period. With this end in view, models (5) and (7) are implemented; 
then the geometric mean is used to rank the forecasted fuzzy data in the 51st period. The 
results are presented in Table 9. 

Three first columns of Table 9 represent the results of running models (5) and (7) and 
their geometric means. Column 4 illustrates the ranking of available fuzzy data sets for 
the 51st period. Unit #11 has the first rank between 20 units with the confidence level 
of 95%. In contrast, unit #4 is placed in the last row with the same confidence. Apart 
from the ranking for the 51st period, the last column of Table 9 explains the ranking of 
available data sets applying the real efficiency scores of the previous period. Interest-
ingly, unit #19 has the first place in the 50th period, whilst unit #11 is ranked as the first 
one in the next period. This unit is placed in the 7th row in the 50th period. Unit #10 is 
placed in the last row in the 50th period. Unit #4 still preserves the lowest place. Its 
place is degraded from 19 in the 50th period to 20 in the next period. DMU2, DMU10 
and DMU18, as well as DMU11 experienced rank improvement. Admittedly, unit #11 has 
been able to achieve the highest efficiency rank among the 20 units in the next period. 
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Also, units DMU8, DMU13, and DMU15 have been severely degraded in terms of their 
ranks. On the other hand, DMU16 still ranked in the 15th place. The reason behind this 
is lack of unit progress. 

Table 9. Ranking of fuzzy units in 51st and in 50th periods 

DMUj 

Optimistic 
efficiency 

best
51stθ  

Pessimistic 
efficiency 

worst
51stθ  

Geometric average 
efficiency 

geom
51stθ  

Ranking by 
geom
51stθ  real

50thθ  

DMU1 0.8066 1 0.8981 19 17 
DMU2 1 1.0975 1.0476 3 9 
DMU3 0.9714 1.499 1.0416 4 8 
DMU4 0.7751 1 0.8803 20 19 
DMU5 1 1.0763 1.0374 5 1 
DMU6 0.9268 1.1136 0.9780 10 12 
DMU7 0.8413 1 0.9172 13 16 
DMU8 0.9342 1.1232 0.9900 9 1 
DMU9 0.9977 1.1547 1.0720 2 1 
DMU10 0.8409 1 0.9170 14 20 
DMU11 1 1.2701 1.1269 1 7 
DMU12 0.9267 1.0567 0.9526 11 13 
DMU13 0.8674 1.1042 0.9114 16 6 
DMU14 0.8909 1.0264 0.9025 17 18 
DMU15 0.9137 1.0185 0.9221 12 1 
DMU16 0.8315 1 0.9118 15 15 
DMU17 0.9999 1.0733 0.0358 6 10 
DMU18 0.9428 1.1034 0.9903 8 14 
DMU19 1 1.0253 1.0125 7 1 
DMU20 0.8911 1.0256 0.9024 18 11 

 
Implementing these results, which were calculated with 95% confidence level, will 

allow managers to trust the forecasted results and justify the production planning in this 
regard. Moreover, not only do the outcomes enforce the managers to investigate the 
causes of rank decrement, but they also create a chance for encouraging the units to 
achieve higher ranks in the coming periods. To sum up, the proposed algorithms enable 
the decision-makers to take the necessary measures for improving the efficiency in fu-
ture periods and prevent reduction in productivity. 

7. Conclusions 

Data envelopment analysis (DEA) is a non-parametric technique for calculating the 
efficiency of DMUs when both inputs and outputs are known and homogenous. Despite 
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industrial managers’ and decision-makers’ interest in periodically forecasting the effi-
ciency as means to regulate activities in terms of using resources and final output, the 
retrospective nature of standard DEA models prohibits this mission, which is a major 
drawback of these models. Assuming a 95% confidence interval for input and output 
values, this paper aimed at addressing this significant drawback by inserting the man-
agers’ viewpoints, which is considered as one of the major strengths of the proposed 
algorithm. Putting the manager’s view into account affords employing a fuzzy data set. 
Two algorithms were proposed in this regard. Firstly, a fuzzy data set was obtained for 
the next period employing the earlier data set supported with a confidence interval of 
95%. The second algorithm forecasted the efficiency measure for the next period and 
generated a procedure for ranking efficient units. A simple geometric mean simplified 
the ranking proses. To reveal the significance of difference between the real efficiency 
and forecasted quantities, the Rank Sum test was used in the algorithm steps. Finally, 
comparing the ranking places and efficiency values in two continuous periods offered 
a valuable chance for the manager to improve the performances and prevent any loss in 
resources and efficiency. A real numerical case exemplified and supported the idea be-
hind the paper. 
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