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Classical methods of data envelopment analysis operate by measuring the efficiency of decision- 
-making units (DMUs) compared to similar units, without taking their internal structure into account. 
However, some DMUs consist of two stages, with the first stage producing an intermediate product, 
which is then consumed in the second stage to produce the final output. The efficiency of this type of 
DMU is often measured using two-stage network data envelopment analysis. In real world, most data 
are vague. Therefore, the inputs and outputs of systems with vagueness data create uncertainty chal-
lenges for DMUs. As a result, when uncertainty appears, intuitionistic fuzzy sets can show more infor-
mation than classical fuzzy sets. This paper presents a model of two-stage Network Data Envelopment 
Analysis based on intuitionistic fuzzy data, which measures the efficiency of the first and second stages 
of each DMU, and the overall efficiency measures based on the stage efficiencies. 
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1. Introduction 

Data Envelopment Analysis (DEA) is widely used as a powerful method for evalu-
ating and comparing the performance of a series of options or decision-making units 
(DMUs). This method involves using the available information about the entities being 
evaluated for the experimental estimation of an efficient frontier that envelopes all the 
available data, hence the name DEA [2]. First proposed by Charnes et al. [8], DEA 
belongs to the family of non-parametric methods based on linear programming. In general, 
the foundation of non-parametric efficiency evaluation methods was laid by Farrell [21], 
who used a purely mathematical approach to develop a new performance measurement 
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method opposite to the existing parametric methods [5]. In some cases, the internal 
structure of DMUs is of great importance for performance evaluation and offers critical 
information that needs to be carefully considered in the evaluation process to avoid im-
precise and incomprehensible results. Network data envelopment analysis (NDEA) is 
an extension of traditional DEA that seeks to incorporate the internal structure of DMUs 
into its decision models. The first studies in this field were carried out in 1996 by Fare 
and Grosskopf [18]. 

Then, Fare and Grosskopf [19] searched the reason for NDEA expression and its 
significance in 2000. In the following years, Cook et al. [14] classified NDEA models 
into four categories. This category includes: 1) standard DEA approach; in this field, 
we can refer to the articles of Lewis and Sexton [31], Chilingerian and Sherman [13], 
Castelli [7] who evaluated the efficiency of DMUs by considering the internal struc-
tures. 2) game theory approach; the Stackelberg game concept is a non-contribution 
approach used for the first time by Liang et al. [32, 33] to measure the performance of 
supply chain settings. Then, Li et al. [34] used the approach of Liang et al. [33] to cal-
culate the efficiency of their research process. 3) NDEA approach; researchers such as 
Chen and Zhu [11] and Chen et al. [12] developed the NDEA model under variable 
returns to scale (VRS) assumption to evaluate the performance of linear and non-linear 
models. Tone and Tsutsui [49] also expressed the network SBM method. 4) decompo-
sition efficiency approach; in this approach, efficiency is studied by considering the 
series and parallel structures of the units. Kao and Hwang [24, 25] introduced a series 
NDEA model and described the efficiency of the overall system as a product of the 
efficiency of the subunits. Kao [26] developed a parallel NDEA model, which is capable 
to calculate the efficiency of the system and the subunits of each DMU in linear pro-
gramming. Kao [27] also presented a full ranking of studies in NDEA based on the type 
of network structure that in addition to the aforementioned classification introduced seven 
categories for NDEA: 1) basic two-stage structures, 2) general two-stage structures,  
3) series structures, 4) parallel structures, 5) mixed structures, 6) hierarchical structure,  
7) dynamic structures. These models were developed by several researchers in later 
years. 

The two-stage DEA can be considered the most basic form of NDEA. Many of the 
methods developed for solving complex NDEA models are inspired by the methods 
formulated for solving simpler two-stage DEA models. Over the years, researchers pro-
posed various methods for evaluating the efficiency of DMUs in two-stage DEA models. 
These methods are reviewed in the articles by Cook et al. [14], Maghbouli et al. [40], Lim 
and Zhu [36], Emrouznejad and Yang [17], and Liu et al. [38]. In traditional DEA, the 
use of imprecise data about DMUs can severely undermine the accuracy of the results. 
By formalising uncertainty in decision making with the help of fuzzy logic, DEA can 
be modified to properly process such data. Although Zadeh [53] was the first to propose 
using fuzzy logic in DEA, the seminal article on this subject was written by Sengupta [45]. 
Since then, numerous articles have been published in this field. A review of these works 
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can be found in the article published by Emrouznejad and Yang [17]. Triantis and Girod 
[50] proposed a mathematical programming model that operates by converting fuzzy 
inputs and outputs to crisp (non-fuzzy) numbers based on membership function values. 
Guo and Tanaka [23] developed a fuzzy DEA (FDEA) model with the CCR approach, 
in which fuzzy constraints are converted to crisp constraints by defining a production 
possibility surface and comparison rule for fuzzy numbers. Later, Leon et al. [30] used 
the approach of Guo and Tanaka [23] to develop an FDEA model with the BCC ap-
proach. Saati and Memarian [44] introduced an FDEA method in which all DMUs are 
evaluated by a set of common weights at different alpha levels. Nosrat et al. [42] used 
the reliability theory to evaluate fuzzy DMUs. Wang et al. [51] used the concept of alpha 
value to define the FDEA models as interval numbers. 

Although many studies have been done in the field of FDEA, few methods proposed 
to solve fuzzy NDEA (FNDEA) models, which each of them have its limitations. First, 
Kao and Liu [29], used fuzzy L-R numbers, developed the lower and upper bounds for 
the efficiency of DMU for each alpha cut in a two-stage fuzzy multiplicative DEA 
model. Lozano [39] proposed two models for evaluating the changes of the stage effi-
ciencies obtained by Kao and Liu [29] methods. Tavana and Khalil Damghani [48] used 
trapezoidal fuzzy numbers in the Kao and Liu method [29] to transform the initial non-
linear model into a linear model that was no longer dependent on the alpha variable. In 
another study, Liu [37] developed the proposed Kao and Liu method [29] for fuzzy 
finite regions. All of these methods are inspired by Kao and Liu [29]. Although this 
method has been widely used it does not work when the inputs and outputs are non- 
-normal fuzzy. In this method, the upper and lower bounds are obtained for the effi-
ciency of the units, whereas these obtained bounds cannot directly compare and rank 
the DMUs. So Kao and Liu [28] used the presented index in Chen’s paper [10] combined 
these bounds and finally ranked the DMUs. But in all these methods, the proposed mod-
els for calculating the lower boundaries are non-linear and just work in constant returns 
to scale (CRS) assumptions. In another paper presented by Shureshjani and Foroughi 
[47], deducted the limitation of Kao and Liu method [29] and used it for two- 
-stage DEA in both CRS and VRS. In this method, by using the conversion function Qα, 
two-stage DEA models are transformed into parametric linear programming models, 
and as a result, the efficiency scores of the obtained DMUs from these models are the 
functions of the alpha parameter that depends on alpha cuts. The main advantages of 
using intuitionistic fuzzy network DEA (IFNDEA) instead of FNDEA is the complexity 
of choosing FNDEA approaches because they are not easily generalisable to IFNDEA 
model.  

In some cases, there may be some ambiguity in the decision-making team’s assess-
ment of a fuzzy criterion. In such cases, where the information is too ambiguous or 
insufficient for decision making, it is best to avoid Zimmerman’s fuzzy sets theory [54] 
and instead use the intuitionistic fuzzy sets (IFS) theory. Intuitionistic fuzzy data have 
been used in the studies of Boran et al. [6], Li et al. [35], Daneshvar [15], and Wei et al. 
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[52], among others. Puri and Yadav [43] developed an intuitionistic fuzzy DEA (IF-
DEA) model for the banking sector in India. Ameri et al. [1] has developed a self-as-
sessment model of NDEA in the intuitionistic fuzzy environment to measure the effi-
ciency of the parallel system when some inputs and outputs are intuitionistic fuzzy in 
nature. Thus, all the variables of the proposed model in this study, including inputs and 
outputs and intermediates and weights are intuitionistic fuzzy numbers and can easily 
evaluated by expected valued function as the variables in Ameri et al. [1] are not all 
intuitionistic fuzzy numbers. So, the proposed model can show the ability of the method 
in real world accurately. Another study in the IFDEA field published by Shakouri et al. 
[46]. They used the NDEA model in series and parallel structures. Then, by introducing 
the accuracy function, they transformed the model into a crisp linear programming and 
ranked and evaluated the decision-making units based on the definition of alpha cut and 
degree of hesitation. The proposed two-stage model of this study compared with the 
model of Shakouri et al. [46] has more powerful and application in the real world due 
to all the variable are intuitionistic fuzzy. So, because of the intuitionistic fuzzy envi-
ronment and the two-stage of the model, the overall DMUs and each of the stages are 
separable and rankable which caused a unique advantage of the proposed model over 
the other models. 

The goal of the present study was to design a mathematical formulation for two- 
-stage IFDEA models, such that the resulting models offer a more realistic and practical 
assessment of efficiency without the weaknesses of the previous models. Hence, this 
paper proposed IFNDEA by all intuitionistic fuzzy variable.  

2. Preliminaries 

2.1. Intuitionistic fuzzy sets 

Intuitionistic fuzzy sets  [53] can be seen as a generalisation of the classic fuzzy sets 
first introduced by Atanassov [4]. Atanassov defines IFS as IA in X with form  

{ }, ( ), ( ) ,I I
I

A A
A x x x x Xμ υ= ∀ ∈ 
     

where  

( ) : [0,1], ( ) : [0,1]I IA A
x X x Xμ υ→ →   

such that  
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0 ( ) ( ) 1,I IA A
x x x Xμ υ≤ + ≤ ∀ ∈   

where ( )IA
xμ   and ( )IA

xυ   denote the degree of membership and the degree of non-mem-

bership of the element x X∈  to the set ,IA  respectively. Besides, for each ,x X∈  intu-
itionistic index or the hesitancy degree of x, ,xπ  is defined as 1 ( ) ( ).I Ix A A

x xπ μ υ= − −   

2.1.1. Intuitionistic fuzzy number 

Definition 1 [41]. IA  is said to be an intuitionistic fuzzy number (IFN), if: 
1) It is normal, i.e., : ( ) 1, ( ) 0.I IA A

x X x xμ υ∀ ∈ = =     
2) ( )IA

xμ  is convex, i.e.,  

{ } [ ]1 2 1 2 1 2( (1 ) ) min ( ), ( ) , , , 0,1I I IA A A
x x x x x x Xμ λ λ μ μ λ+ − ≥ ∀ ∈ ∈    

3) ( )IA
xυ  is concave, i.e., 

{ } [ ]1 2 1 2 1 2( (1 ) ) max ( ), ( ) , , , 0,1I I IA A A
x x x x x x Xυ λ λ υ υ λ+ − ≤ ∀ ∈ ∈    

Definition 2. An IFN is shown as 

 1 2 3 4 1 2 3 4, ( ), ( ) ( , , , ; , , , )I IA A
x x x a a a a b b b bμ υ =    

 such that degrees of membership ( )IA
xμ   and non-membership ( )IA

xυ   are as follows: 

 

1 2 1 2

2 3 2 3

3 4 3 4

( ), ( ),

1, 0,
( ) and ( )

( ), ( ),

0 otherwise 1 otherwise

I IA A

f x a x a h x b x b

a x a b x b
x x

g x a x a k x b x b
μ υ

 ≤ < ≤ <
 
 

≤ ≤ ≤ ≤  = = 
 < ≤ < ≤
 
 
  

    (1) 

where ,f k  are monotonically increasing functions and ,g h are monotonically de-
creasing functions.  
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2.1.2. Triangular intuitionistic fuzzy number 

Definition 3 [41]. An IFN is called a triangular intuitionistic fuzzy number (TIFN) 
if its membership function ( )IA

xμ   and non-membership function ( )IA
xυ   are as follows: 

 

1 2
1 2 1 2

2 1 1 2

2 2

3 2
2 3 2 3

2 3 3 3

, ,

1, 0,
( ) and ( )

, ,

0 otherwise 1 otherwise

I IA A

x a x aa x a a x a
a a a a

x a x a
x x

x a x aa x a a x a
a a a a

μ υ

′
′

′
′

 − −≤ < ≤ < − − 
 
 = = = = 
 − −
 < ≤ < ≤

− − 
 
  

    (2) 

where 1 1 2 3 3 .a a a a a′ ′≤ ≤ ≤ ≤  This TIFN is represented by ( )1 2 3 1 2 3, , ; , , .IA a a a a a a′ ′=  

2.1.3. Arithmetic operations on intuitionistic fuzzy numbers 

Consider two TIFNs like IA and IB as follows: 

1 2 3 1 2 3 1 2 3 1 2 3( , , ; , , ) and ( , , ; , , )I IA a a a a a a B b b b b b b′ ′ ′ ′= =   

Then, the following relationships hold: 

 

( ) ( )
( ) ( )

( )
( )
( )

1 1 2 2 3 3 1 1 2 2 3 3

1 1 2 2 3 3 1 1 2 2 3 3

1 2 3 1 2 3

3 2 1 3 2 1

i : , , ; , ,

ii : , , ; , ,

, , ; , , , 0
iii : for  

, , ; , , , 0

I I

I I

I

A B a b a b a b a b a b a b

A B a b a b a b a b a b a b

ka ka ka ka ka ka k
k R kA

ka ka ka ka ka ka k

′ ′ ′ ′

′ ′ ′ ′

′ ′

′ ′

⊕ = + + + + + +

⊗ ≈

 >
∈ = 
 <

 

 



 
 (3)

 

2.1.4. Expected values of intuitionistic fuzzy numbers and their characteristics 

Definition 4 [22]. If ( )1 2 3 4 1 2 3 4, , , ; , , ,IA a a a a b b b b= is an IFN, then the expected 

interval of this number is defined as follows: 
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 ( ) ( ), ( )I I I
L REI A E A E A =  

     (4) 

where 

2 2

1 1

1 2 1 1( ) ( ) ( )
2 2 2

b a
I

L
b a

b aE A h x f x dx+= + −    

and 

4 4

3 3

3 4 1 1( ) ( ) ( )
2 2 2

a b
I

R
a b

a bE A g x k x dx+= + −    

Accordingly, the expected value based on this IFN, is defined as 

 ( ( ) ( ))( )
2

I I
I L RE A E AEV A +=

    (5) 

Proposition 1. If ( )1 2 3 1 2 3, , ; , ,IA a a a a a a′ ′=  is a TIFN, then ( )IEI A is equal to 

 
1 2 1 3 2 32 2( ) ,

4 4
I a a a a a aEI A

′ ′ + + + +=  
 

   (6) 

So, the expected value for a TIFN is equal to 

 
1 1 2 3 34( )

8
I a a a a aEV A

′ ′+ + + +=   (7) 

Proposition 2. The expected value is a linear relationship, in the sense that the fol-
lowing relationship holds for any two intuitionistic fuzzy numbers like IA and :IB  

 ( ) ( ) ( )I I I IEV A B EV A EV B+ = +     (8) 

2.2. Two-stage data envelopment analysis 

DEA was first introduced by Charnes et al. [8] who developed a model called CCR 
for evaluating a set of DMUs. The traditional DEA models evaluate the relative effi-
ciency of DMUs using a “black box” approach which means focusing on the weights of 
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inputs and outputs and ignoring the internal processes of the evaluated units. Some DEA 
models, like network-type models, take a different approach to efficiency evaluation. In 
the network DEA, various stages of production are linked to each other through inter-
mediate products which are the outputs of one stage and the inputs of another stage. The 
two-stage structure was first introduced by Fare [20] and then expanded by other re-
searchers [18, 19]. Initially, these structures were designed such that only the outputs of 
the first stage could be the input of the second stage [19]. But later, the two-stage net-
work models were expanded to allow the second stage to receive other inputs as well as 
the outputs of the first stage. Efficiency evaluation in two-stage systems is a major sub-
field of DEA. 

The most famous two-stage approaches are Kao and Hwang [25] and Chen et al. 
[9]. One of the limitations of the model of Kao and Hwang [18] is its inability to 
handle under the VRS assumption. As their model remains linear under the CRS as-
sumption, but under the VRS assumption, it is converted into a non-linear form. There-
fore, Chen et al. [9] introduced an additive model in 2009, which is obtained from the 
model of Kao and Hwang [25], and then they have combined the efficiency of the 
stages and calculated the overall efficiency by using the weighted additive approach. 
The multiplicative method in the model of Kao and Hwang [25] and the developed 
model of Kao and Hwang [25] by Chen et al. [9] have a decomposition approach 
which is the first estimate the overall efficiency and then the efficiency of each stage 
is calculated based on the obtained optimal solution of the overall efficiency. How-
ever, Despotis et al. [16] showed that the proposed approach by Chen et al. [9]  have 
two shortcomings.  

The first shortcoming given in Chen et al. [9] that discussed by Despotis et al. [16] 
for the weights W1 and W2, they represent the relative contribution of two-stage to the 
overall performance of the DMU in the two-stage DEA model, but as long as the weights 
derive from the optimal solution, they depend on the DMU being evaluated and they are 
different for different DMUs. Hence, the size of a stage is not an objective reality, as it 
is viewed differently from each DMU in the two-stage DEA model. The second short-
coming to Chen et al. [9], is much more important. According to the definition of 
weights and the optimal value in the weighted additive method of this approach, the 
second weight is always less than or equal to the first weight. This bias of the weights 
is a big shortcoming as it biases the stage efficiencies. Also, the bias of the stages leads to 
the bias of the overall efficiency. To overcome these shortcomings, Despotis et al. [16] pre-
sented a bias-free approach to assess unique efficiency score for two stages, which are 
then aggregated to get the overall efficiency score of evaluated units, without any nec-
essary to define the overall efficiency at first. For this reason, this method has been 
named the composition approach. Therefore, in this paper, the proposed model by Des-
potis et al. [16] is used. 
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3. Development of the two-stage DEA model  
in the intuitionistic fuzzy environment using a combined approach 

The approach proposed by Despotis et al. [16] for efficiency evaluation of two-stage 
systems in an intuitionistic fuzzy environment is to make unique evaluations of the two 
stages simultaneously. In this approach, to determine the efficiency of a two-stage 
DMU, the first stage is treated as an output-oriented subunit and the second stage is 
treated as an input-oriented subunit, with the same intermediate weights used for both 
stages. Then, the two subunits are adjusted in terms of the values of efficiency to maximise 
the overall efficiency. In the following, we first present a brief description of the model of 
Despotis et al. [16], Consider the problem of evaluating the efficiency of n two-stage deci-
sion-making units , 1, ..., ,jDMU j n=  each using m inputs , 1, ..., ,ijX i m=  in the first 
stage to produce D outputs or intermediate measures , 1, ..., ,djZ d D=  which are then 
used as the inputs of the second stage. The output of the second stage is denoted by 

, 1, ..., .rjY r s=  For this problem, the overall efficiency of the two-stage system based 
on the model of Despotis et al. [16] will be as follows: 

Remark 1. The overall efficiency is obtained by aggregative the two objective func-

tions additively, 1
1

,
m

i ij
i

E xν
=

= 
 which is the efficiency of the first stage based on a min-

imisation model, and 2
1

,
s

r rj
r

E u y
=

= 
 which is the efficiency of the second stage based 

on a maximisation model. This method can evaluate the efficiency score of the two 
stages together with a common weight simultaneously, as two stages tend to work to-
gether to maximise the overall efficiency score of the .jDMU


 Then single-objective 

program is as follows: 

 

1 1

1

1 1

1 1

min

s.t.

1, 1, ...,

0, 1, ...,

0, 1, ...,

, , 0, 1, ..., ; 1, ..., ; 1, ...,

m s

i ij r rj
i r

f

d dj
d

f m

d dj i ij
d i

fs

r rj d dj
r d

i d r

x u y

w z j n

w z x j n

u y w z j n

w u i m d f r s

ν

ν

ν

= =

=

= =

= =

−

= =

− ≤ =

− ≤ =

≥ = = =

 



 

 

 



  (9) 
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Remark 2. If ( , )i rv u∗ ∗ is an optimal solution of model (9), the efficiency score for 

unit j in the first and the second stages will be, respectively, 1

1

1

ij

m

i
i

E
xν

∗

∗

=

=




 and 

2
1

,
s

r rj
r

E u y∗ ∗

−

= 
 because the purpose is to minimise the objective function of model (9). 

Hence, according to the multiplicative method introduced by Kao and Hwang [25], the 
overall efficiency and the stage efficiencies of the jDMU


 are defined as: 1 2 .E E E∗ ∗ ∗= ×  

The ptimal value of the objective function of model (9) is: 
1 1

0.
m s

i ij r rj
i r

x u yν ∗ ∗

= =

− ≥  
 

The unit j  is efficient in both stages and thus, overall efficient, if and only if the 
optimal value of the objective function is zero. Otherwise, it is overall inefficient. How-

ever, it is the normalisation constraint
1

1
f

d dj
d

w z
=

= 
, on the intermediate measures in 

model (9) that allows us to infer the efficiency scores of the individual stages, as given 

respectively 1
1

ij

m

i
i

E xν∗ ∗

=

=


 and 2
1

1 .
s

r r rj

E
u y

∗
∗

=

=


 

If the variables are intuitionistic fuzzy numbers, then model (9) can be rewritten 
into model (10). 

 

1 1

1

1 1

1 1

min

s.t.

1, 1, ...,

0, 1, ...,

0, 1, ...,

, , 0, 1, ..., ; 1, ..., ; 1, ...,

m s
I I I I
i ij r rj

i r

f
I I
d dj

d
f m

I I I I
d dj i ij

d i
fs

I I I I
r rj d dj

r d
I I I
i d r

x u y

w z j n

w z x j n

u y w z j n

w u i m d f r s

ν Θ

Θ ν

Θ

ν

= =

=

= =

= =

⊗ ⊗

⊗ = =

⊗ ⊗ ≤ =

⊗ ⊗ ≤ =

> = = =

 



 

 

 



   

 

 

   

  

  (10) 

The present study aims to expand this two-stage DEA model based on intuitionistic 
triangular fuzzy numbers. Therefore, model (10) is rewritten based on triangular intui-
tionistic fuzzy numbers and the method of Puri and Yadav [43]: 
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( ) ( )

( ) ( )

( )

1 2 3 1 2 3 1 2 3 1 2 3

1

1 2 3 1 2 3 1 2 3 1 2 3

1

1 2 3 1 2 3 1 2 3 1 2

, , ; , , , , ; , ,

, , ; , , , , ; , ,

s.t.

, , ; , , , , ; , ,

m

i i i i i i ij ij ij ij ij ij
i
s

r r r r r r rj rj rj rj rj rj
r

d d d d d d dj dj dj dj dj d

x x x x x x

u u u u u u y y y y y y

w w w w w w z z z z z z

ν ν ν ν ν ν Θ′ ′ ′ ′

=

′ ′ ′ ′

=

′ ′ ′

⊗

⊗

⊗





     

     

    ( )

( ) ( )

( ) ( )

3

1

1 2 3 1 2 3 1 2 3 1 2 3

1

1 2 3 1 2 3 1 2 3 1 2 3

1

1 2 3 1

(1, 1, 1; 1, 1, 1), 1, ...,

, , ; , , , , ; , ,

, , ; , , , , ; , ,

(0, 0, 0; 0, 0, 0), 1, ...,
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 (11)

 

As based on the intuitionistic triangular fuzzy numbers operators in Equation (3), 
model (11) can be rewritten into model (12). 
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  (12) 

As can be seen, this model is represented by intuitionistic fuzzy numbers (6 com-
ponents). Therefore, the expected values of intuitionistic fuzzy numbers are used to con-
vert this model into a linear crisp model. By obtaining the expected value of the objec-
tive function and constraints of model (12), this model can be turned into model (13). 
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  (13) 

Then, equation (7) is used to calculate the expected value of the intuitionistic trian-
gular fuzzy numbers and rewrite the second proposition of model (13) into the linear 
promising model (14). 
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 (14)

 

Solving model (14) gives the overall efficiency of each DMU, i.e., the E∗  discussed 
in Remark 2, based on intuitionistic triangular fuzzy numbers. 
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4. Numerical example 

The computational process of the introduced model will be illustrated by running the 
model on intuitionistic fuzzy data sets. The problem used for this purpose has 12 DMUs, 
each having 3 inputs in the first stage, 2 intermediate products, and 3 outputs in the second 
stage. The general model of these DMUs is shown in Fig. 1. The triangular intuitionistic 
fuzzy data of the above example are presented in Tables 1–3. 

 
Fig. 1. Two-stage model of the numerical example 

Table 1. Triangular intuitionistic fuzzy inputs in stage I assumed for 12 DMUs 

Input 3 Input 2 Input 1 DMU 
 (5.6, 6.1, 6.6; 
5.1, 6.1, 7.6) 

 (4.87, 5.37, 5.87; 
4.37, 5.37, 6.87) 

 (6, 6.5, 7; 
5.5, 6.5, 8) 1 

 (3.94, 4.44, 4.94; 
3.44, 4.44, 5.94) 

 (4.88, 5.38, 5.88; 
4.38, 5.38, 6.88) 

 (5.33, 5.83, 6.33; 
4.83, 5.83, 7.33) 2 

 (5.37, 5.87, 6.37; 
4.87, 5.87, 7.37) 

 (4.79, 5.29, 5.79; 
4.29, 5.29, 6.79) 

 (5.31, 5.81, 6.31; 
4.81, 5.81, 7.31) 3 

 (5.38, 5.88, 6.38; 
4.88, 5.88, 7.38) 

 (4.81, 5.31, 5.81; 
4.31, 5.31, 6.81) 

 (5.5, 6, 6.5; 
5, 6, 7.5) 4 

 (4.45, 4.95, 5.45; 
3.95, 4.95, 6.45) 

 (4.23, 4.73, 5.23; 
3.73, 4.73, 6.23) 

 (4.65, 5.15, 5.65; 
4.15, 5.15, 6.65) 5 

 (4.36, 4.86, 5.36; 
3.86, 4.86, 6.36) 

 (4.51, 5.01, 5.51; 
4.01, 5.01, 6.51) 

 (4.45, 4.95, 5.45; 
3.95, 4.95, 6.45) 6 

 (4.78, 5.28, 5.78; 
4.28, 5.28, 6.78) 

 (3.71, 4.21, 4.71; 
3.21, 4.21, 5.71) 

 (4.35, 4.85, 5.35; 
3.85, 4.85, 6.35) 7 

 (4.64, 5.14, 5.64; 
4.14, 5.14, 6.64) 

 (4.14, 4.64, 5.14; 
3.64, 4.64, 6.14) 

 (4.92, 5.42, 5.92; 
4.42, 5.42, 6.92) 8 

 (4.64, 5.14, 5.64; 
4.14, 5.14, 6.64) 

 (4.14, 4.64, 5.14; 
3.64, 4.64, 6.14) 

 (4.85, 5.35, 5.85; 
4.35, 5.35, 6.85) 9 

 (4.63, 5.13, 5.63; 
4.13, 5.13, 6.63) 

 (4.05, 4.55, 5.05; 
3.55, 4.55, 6.05) 

 (4.6, 5.1, 5.6; 
4.1, 5.1, 6.6) 10 

 (3.71, 4.21, 4.71; 
3.21, 4.21, 5.71) 

 (3.38, 3.88, 4.38; 
2.88, 3.88, 5.38) 

 (3.48, 3.98, 4.48; 
2.98, 3.98, 5.48) 11 

 (5.43, 5.93, 6.43; 
4.93, 5.93, 7.43) 

 (4.41, 4.91, 5.41; 
3.91, 4.91, 6.41) 

 (5.31, 5.81, 6.31; 
4.81, 5.81, 7.31) 12 
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Table 2. Triangular intuitionistic fuzzy intermediate products assumed for 12 DMUs 

Intermediate 2 Intermediate 1 DMU Intermediate 2 Intermediate 1  
 (4.36, 4.86, 5.36; 
3.86, 4.86, 6.36) 

 (2.57, 2.97, 3.37; 
2.27, 2.97, 4.07) 7  (5.2, 5.7, 6.2; 

4.7, 5.7, 7.2) 
 (2.65, 3.05, 3.45; 
2.35, 3.05, 4.15) 1 

 (4.78, 5.28, 5.78; 
4.28, 5.28, 6.78) 

 (2.92, 3.32, 3.72; 
2.62, 3.32, 4.42) 8  (4.68, 5.18, 5.68; 

4.18, 5.18, 6.68) 
 (2.66, 3.06, 3.46; 
2.36, 3.06, 4.16) 2 

 (5.14, 5.64, 6.14; 
4.64, 5.64, 7.14) 

 (2.92, 3.32, 3.72; 
2.62, 3.32, 4.42) 9  (4.68, 5.18, 5.68; 

4.18, 5.18, 6.68) 
 (4, 4.4, 4.8; 
3.7, 4.4, 5.5) 3 

 (3.96, 4.46, 4.96; 
3.46, 4.46, 5.96) 

 (2.66, 3.06, 3.46; 
2.36, 3.06, 4.16) 10  (6.05, 6.55, 7.05; 

5.55, 6.55, 8.05) 
 (4.44, 4.84, 5.24; 
4.14, 4.84, 5.94) 4 

 (3.57, 4.07, 4.57; 
3.07, 4.07, 5.57) 

 (1.42, 1.82, 2.22; 
1.12, 1.82, 2.92) 11  (4.6, 5.1, 5.6; 

4.1, 5.1, 6.6) 
 (2.05, 2.45, 2.85; 
1.75, 2.45, 3.55) 5 

 (4.75, 5.25, 5.75; 
4.25, 5.25, 6.75) 

 (2, 2.4, 2.8; 
1.7, 2.4, 3.5) 12  (4.3, 4.8, 5.3; 

3.8, 4.8, 6.3) 
 (2.68, 3.08, 3.48; 
2.38, 3.08, 4.18) 6 

Table 3. Triangular intuitionistic fuzzy outputs in stage II assumed for 12 DMUs 

Output 3 Output 2 Output 1 DMUs 
 (3.3, 3.8, 4.3; 
2.8, 3.8, 5.3) 

 (4.18, 4.68, 5.18; 
3.68, 4.68, 6.18) 

 (4, 4.5, 5; 
3.5, 4.5, 6) 1 

 (3.36, 3.86, 4.36; 
2.86, 3.86, 5.36) 

 (3.88, 4.38, 4.88; 
3.38, 4.38, 5.88) 

 (3.53, 4.03, 4.53; 
3.03, 4.03, 5.53) 2 

 (3.49, 3.99, 4.49; 
2.99, 3.99, 5.49) 

 (3.88, 4.38, 4.88; 
3.38, 4.38, 5.88) 

 (3.57, 4.07, 4.57; 
3.07, 4.07, 5.57) 3 

 (4.62, 5.12, 5.62; 
4.12, 5.12, 6.62) 

 (4.87, 5.37, 5.87; 
4.37, 5.37, 6.87) 

 (5, 5.5, 6; 
4.5, 5.5, 7) 4 

 (3.1, 3.6, 4.1; 
2.6, 3.6, 5.1) 

 (3.03, 3.53, 4.03; 
2.53, 3.53, 5.03) 

 (3.32, 3.82, 4.32; 
2.82, 3.82, 5.32) 5 

 (3.39, 3.89, 4.39; 
2.89, 3.89, 5.39) 

 (3.14, 3.64, 4.14; 
2.64, 3.64, 5.14) 

 (3.38, 3.88, 4.38; 
2.88, 3.88, 5.38) 6 

 (3.65, 4.15, 4.65; 
3.15, 4.15, 5.65) 

 (3.47, 3.97, 4.47; 
2.97, 3.97, 5.47) 

 (3.27, 3.77, 4.27; 
2.77, 3.77, 5.27) 7 

 (5.19, 5.69, 6.19; 
4.69, 5.69, 7.19) 

 (5.1, 5.6, 6.1; 
4.6, 5.6, 7.1) 

 (4.78, 5.28, 5.78; 
4.28, 5.28, 6.78) 8 

 (3.7, 4.2, 4.7; 
3.2, 4.2, 5.7) 

 (3.89, 4.39, 4.89; 
3.39, 4.39, 5.89) 

 (3.91, 4.41, 4.91; 
3.41, 4.41, 5.91) 9 

 (3.77, 4.27, 4.77; 
3.27, 4.27, 5.77) 

 (4.04, 4.54, 5.04; 
3.54, 4.54, 6.04) 

 (3.78, 4.28, 4.78; 
3.28, 4.28, 5.78) 10 

 (2.98, 3.48, 3.98; 
2.48, 3.48, 4.98) 

 (3.45, 3.95, 4.45; 
2.95, 3.95, 5.45) 

 (3.41, 3.91, 4.41; 
2.91, 3.91, 5.41) 11 

 (3.9, 4.4, 4.9; 
3.4, 4.4, 5.9) 

 (3.89, 4.39, 4.89; 
3.39, 4.39, 5.89) 

 (3.6, 4.1, 4.6; 
3.1, 4.1, 5.6) 12 

 
Table 4 shows the efficiency of the first and second stages and the overall efficiency 

of DMUs, according to Model (14), which is solved by Lingo software and considered 
1 2 0.5w w= =  to solve model (14). 
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Table 4. The overall efficiency and the efficiencies 
of the first and second stage 

E ∗  
1

1
E∗  2E∗  1E∗  DMU 

0.699 0.812 1.231 0.862 1 
0.814 0.814 1.229 0.995 2 
0.751 0.799 1.251 0.939 3 
0.841 0.841 1.189 1 4 
0.730 0.791 1.263 0.923 5 
0.721 0.810 1.233 0.889 6 
0.759 0.811 1.234 0.936 7 
0.923 1 1 0.923 8 
0.779 0.791 1.264 0.985 9 
0.771 0.960 1.041 0.803 10 
0.936 0.989 1 0.936 11 
0.840 0.968 1.033 0.868 12 

 
When the optimal solution of model (14) is 1 2 1,E E∗ ∗= =  the two-stages of the pro-

cess have a single overall efficiency. Therefore, Model (14) correctly defines the effi-
cient frontier of the two-stage production process. Hence, according to the results of the 
above table, for the first stage of the fourth DMU, the input can be reduced with a fixed 
output, and for the second stage of the eighth DMU, the output can be increased by with 
a fixed input. Therefore, for the other DMUs, should be used to produce less inputs in 
the first stage and should be used to produce more outputs in the second stage, so can 
increase the efficiency of the overall system. 

5. Discussion and conclusion 

This study aims to develop a two-stage DEA model for efficiency measurement 
with intuitionistic fuzzy data so as to determine the minimum and maximum input and 
output levels of DMUs based on the minimisation of 1E∗  values and maximisation of 

2E∗  values. The proposed model is solved for a numerical example with 12 DMUs, each 
with 3 inputs in the first stage, 2 intermediates, and 3 outputs in the second stage, using 
Lingo software. 

The review of the research literature show that previous studies on tracing the causes 
of inefficiency in two-stage DEA problems considered the stages as independent pro-
cesses. This approach assumes that each subunit competes with the other one and has 
its own unique efficiency and, ultimately, considers the average efficiency of the two stages 
as the overall efficiency score [9, 25]. But if you ignore the intermediate measures, com-
petition may cause the second stage to appear inefficient, as it has to work with the added 
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inputs. This may result in the product of the efficiency scores of the two stages becom-
ing an unrealistic value. Also, while a few studies used the theory of intuitionistic fuzzy 
sets in DEA [15, 43], no study has applied this theory to the two-stage DEA. The model 
proposed by Kao and Hwang [25], which is an NDEA model based on slack variables, 
offers incomplete assessment of units as it ignores the intermediate values. Also, in the 
model by Chen et al. [9], which is inspired by the model by Kao and Hwang [25] but 
uses CRS, the overall efficiency is obtained by weighted averaging of the efficiency 
scores of the two stages based on an additive approach. According to Despotis et al. [16] 
and Anandarao et al. [3], the multiplicative method of Kao and Hwang [25] and the addi-
tive method of Chen et al. [9] both use a decomposition approach, meaning that they first 
obtain the overall efficiency and then use decomposition approach to determine the effi-
ciency of the individual stages. Since this efficiency measurement approach is erroneous, 
they used a composition approach for the simultaneous maximisation of the overall effi-
ciency and the efficiency of the individual stages. In the modeling approach of this study, 
to ensure the efficiency of the first and second stages, as well as the system as a whole, 
first, each stage is evaluated individually, and then the efficiency values of the two stages 
are adjusted simultaneously, using the multiplicative method to obtain the overall effi-
ciency score. In this model, the first stage is output-oriented, and the second stage is input-
oriented. In other words, each stage optimises the intermediate measures that link the two 
stages together independently. So, a two-stage production process with intuitionistic fuzzy 
data is created to allow managers better examine the performance of DMUs and assess 
their overall efficiency based on the efficiency of the first and second stages with the 
intermediate measures taken into account. 

The feature that distinguishes the proposed model from the other models is the abil-
ity to reduce the impact of less significant factors on the efficiency of DMUs. This 
means that if a unit is inefficient, the model can show the more important stage in which 
the efficiency is undesirable, that is, the stage that needs to be improved. And if a unit 
has a good efficiency score, it means that the more important stage is consistent with 
the management goals. In other words, the proposed method takes into account not only 
input and output variables, but also intermediate measures and individual stages. Given 
the intuitionistic fuzzy nature of data in the proposed model, it can be expected to pro-
vide more accurate results than crisp models. 
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