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Weight elicitation is an important part of multi-criteria decision analysis. In real-life decision-
making problems precise information is seldom available, and providing weights is often cognitively 
demanding as well as very time- and effort-consuming. The judgment of decision-makers (DMs) de-
pends on their knowledge, skills, experience, personality, and available information. One of the weights 
determination approaches is ranking the criteria and converting the resulting ranking into numerical 
values. The best known and most widely used are rank sum, rank reciprocal and centroid weights tech-
niques. The goal of this paper is to extend rank ordering criteria weighting methods for imprecise data, 
especially fuzzy data. Since human judgments, including preferences, are often vague and cannot be 
expressed by exact numerical values, the application of fuzzy concepts in elicitation weights is deemed 
relevant. The methods built on the ideas of rank order techniques take into account imprecise infor-
mation about rank. The fuzzy rank sum, fuzzy rank reciprocal, and fuzzy centroid weights techniques 
are proposed. The weights obtained for each criterion are triangular fuzzy numbers. The proposed fuzzy 
rank ordering criteria weighting methods can be easily implemented into decision support systems. 
Numerical examples are provided to illustrate the practicality and validity of the proposed methods. 

Keywords: multi-criteria decision analysis, criteria weights, criteria ranking, fuzzy criteria ranking, fuzzy 
criteria weights 

1. Introduction 

Multi-criteria decision-making (MCDM) problems can be divided into two kinds. 
In classical MCDM problems, the information provided by the decision-makers (DMs) 
takes exact numerical values, and the ratings and the weights of criteria are measured in 
crisp numbers [31, 60]. In the fuzzy multi-criteria decision-making (FMCDM) prob-
lems, the ratings and the weights of criteria evaluated on incomplete information, im-
precision, subjective judgment and vagueness are usually expressed by interval or fuzzy 
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numbers [9, 17, 36], intuitionistic fuzzy numbers [4, 72], interval-valued intuitionistic 
fuzzy [63], linguistic terms [15, 76], evidence theory [70], ordered fuzzy numbers [51], 
among others. 

The multi-criteria decision-making process is often constituted from four separate 
main stages: alternatives’ formulation and criteria selection, criteria weighting, evalua-
tion alternatives, and final aggregation and ranking [31, 58]. The second step, weight 
elicitation, is a vital part in multi-criteria decision analysis and the discussion of weights 
is a very important issue in both MCDM and FMCDM which can greatly influence the 
results of multi-criteria aiding techniques, and hence has been the focus of many papers 
[19, 48, 49, 55, 61, 73], among others. 

As Choo et al. [19] point out, the true meaning and the validity of criteria weights 
are crucial in order to avoid improper use of the MCDM models. Unfortunately, criteria 
weights are often misunderstood and misused, and there is no consensus on their mean-
ing. The authors also provide a list of possible interpretations of weights. In general, we 
can distinguish two main types of weights: importance coefficients, and trade-offs. The 
main difference between weights as the importance of criteria and weights as trade-offs 
is that of compensation between criteria, which refers to the fact that a good perfor-
mance in some criteria can offset a bad performance in another one. What is also im-
portant, weights as importance coefficients require the use of non-compensatory multi-
criteria methods. 

For our paper, we assume that criteria weights show the relative importance of cri-
teria in the problem considered. It should be taken into account that in the real-life de-
cision-making problem precise information is seldom available and providing weights 
is often cognitively demanding as well as very time- and effort-consuming. The judg-
ment of decision-makers depends on their knowledge, skills, experience and personal-
ity, and available information [22, 48]. Morton and Fasolo [43] report the implications 
of biases for multicriteria decision analysis modelling. They point out that for most de-
cision-makers, weighting criteria is the most cognitively demanding part of the MCDA 
process and that even under relatively favourable conditions where analytic support is 
available, weight judgements exhibit predictable biases. Montibeller and von Winter-
feldt [42] identify the cognitive and motivational biases in multicriteria analysis, includ-
ing weight elicitation, and guiding the existing debiasing techniques to overcome these 
biases. Weber and Borcherding [72] investigate behavioural influences on weight judg-
ments and examine biases in multicriteria weight assessment. This was the motivation 
for searching for weighting criteria methods which, on the one hand, are less cognitively 
demanding for decision-makers, and, on the other hand, may reduce biases in weights 
elicitation. 

One of the approaches to weights determination is to rank the criteria and to convert 
the resulting ranking into numerical values [6, 56, 58]. Using ranks to elicit weights by 
formulas is sometimes more reliable than directly assigning weights to criteria. This is 
because decision-makers are usually more confident about the ranks of certain criteria 
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and they can agree to them more easily than to their weights. The best known and most 
widely used techniques in this respect are rank sum, rank reciprocal [58], and centroid 
weights [6, 56]. 

The goal of this paper is to extend the rank ordering criteria of weighting methods 
for the imprecise data, especially fuzzy data, cases. The novel methods are built on the 
ideas of rank order methods that take into account imprecise information about rank. 
The weights obtained for all criteria are triangular fuzzy numbers. The fuzzy rank sum, 
fuzzy rank reciprocal and fuzzy centroid weights techniques are proposed. Certain prop-
erties of the ranking function are also studied. A comparative analysis is provided to 
show the effectiveness of the proposed methods. Finally, numerical examples are pro-
vided to illustrate the practicality and validity of the fuzzy rank ordering of weighing 
methods. The involvement of this work is three-fold. Firstly, it contributes to decision 
analysis with a proposition extending rank ordering criteria of weighting methods for 
imprecise data. Secondly, it argues the usability of such an approach from the behav-
ioural perspective point of view. The proposed approach allows one to avoid or mini-
mise biases in crisp weights evaluation. Thirdly, it shows that the proposed fuzzy rank 
ordering criteria weighting methods can be easily implemented in decision support sys-
tems. 

The remainder of this paper is organised as follows. In Section 2, we introduce pre-
liminary information: basic definitions and notations of crisp weights, fuzzy numbers, 
fuzzy normalization, and fuzzy weights. In Section 3, we present a brief overview of 
weighting techniques criteria. In Section 4, the classical rank ordering weighting tech-
niques are outlined and a comparative analysis of rank ordering criteria weighing tech-
niques is provided. In Section 5, fuzzy extensions of those methods are proposed. In 
Section 6, an illustrative example is presented. Finally, conclusions are formulated. 

2. Preliminaries 

2.1. Crisp weights elicitation 

Consider a multiple criteria decision-making problem with a finite set X = {x1, ..., xn} of 
n criteria. Let us assume that the decision-maker assigns to each criterion xk individual 
weights rk  which represents the importance of criteria numerically. The individual 
weights are normalised by dividing by the sum of all individual weights 
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The individual weights are converted to fractions between 0 and 1, with the sum of 
all normalised weights equal to 1. 

Definition 1. Given the set X = {x1, ..., xn} of criteria, the set W = {w1, ..., wn} consists 
of the weights of these criteria, where wk reflects the importance degree of xk, if all wk 
are non-negative and 
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2.2. Fuzzy numbers, fuzzy operations, and fuzzy weights elicitation 

This subsection introduces the definitions and basic concepts related to fuzzy sets, 
fuzzy numbers, operational laws, and fuzzy normalisation (for details see [37]). 

Definition 2. A fuzzy set a  in a universe of discourse X is characterised by a mem-
bership function ( )a xμ   which associates with each element x in X a real number from 
the interval [0, 1]. The value ( )a xμ  is called the grade of membership of x in .a   

Definition 3. A fuzzy number is a fuzzy set of on real line R that is both convex and 
normal. 

Definition 4. A triangular fuzzy number n  can be denoted by ( ), ,l m un n n  and its 
membership function is defined as 
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where nl represents the smallest value possible, nm – the most probable value, and nu 

– the largest possible value. A triangular number ( ), ,l m un n n is positive if nl > 0. 

Definition 5. Given any two positive triangular fuzzy numbers ( ), ,l m un n n n=  and 

( ) ( ), , , 0 ,l m u l lk k k k n k= >  and a positive real number r, the main operations of fuzzy 

numbers  and n k  can be expressed as follows 
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• addition 

 ( ), ,l l m m u un k n k n k n k⊕ = + + +   (4) 

• subtraction 

 ( ), ,l u m m u ln k n k n k n k= − − −�    (5) 

• multiplication by scalar 

 ( ), ,l m un r n r n r n r⊗ =   (6) 

• multiplication 

 ( ), ,l l m m u un k n k n k n k⊗ ≅   (7) 

• inverse 

 1 1 1 1, ,
u m l

n
n n n

−  
≅  
 

   (8) 

• max of TFN 

 ( ) ( ) ( ) ( )( )max , max , , max , , max ,l l m m u un k n k n k n k=  (9)  

• min of TFN 

 ( ) ( ) ( ) ( )( )min , min , , min , , min ,l l m m u un k n k n k n k=  (10) 

• the vertex distance 

 ( ) ( ) ( ) ( )( )2 2 21,
3 l l m m u ud n k n k n k n k= − + − + −   (11) 

Ranking fuzzy numbers is often a necessary step in many mathematical models, and 
a large number of ranking methods have been proposed [17, 13]. Ranking methods are 
classified into four major classes [17]: preference relations, fuzzy mean and spread, 
fuzzy scoring, and linguistic expressions. In this paper, we use the concept of defuzzi-
fication for rank ordering of fuzzy numbers which consists of the selection of a specific 
real element based on the output fuzzy set and the conversion of fuzzy numbers into 
real numbers. 

Definition 6. The crisp real number corresponding to the triangular fuzzy number 
( ), ,l m un n n n= is obtained as follows [35] 
• first of maxima 
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 ( )FOM md n n=   (12) 

• center of gravity 

 ( )COG 3
l m un n nd n + +=  (13)  

We define the ranking of fuzzy triangular fuzzy numbers by defuzzification formu-
las as follows. 

Definition 7. Given any two positive triangular fuzzy numbers ( ), ,l m un n n n=  and 

( ), , ,l m uk k k k=  

  ( ) ( )X X Xn k d n d k⇔ ≥    (14) 

 ( ) ( )X X Xn k d n d k≈ ⇔ =     (15) 

where X ∈ {FOM, COG}. 
In general, in the FOM (first of maxima) method, the defuzzification value is deter-

mined for the first value for which the membership function reaches the maximum value 
of one. In the case of the triangular fuzzy number, ( ), , ,l m un n n n=  this occurs for nm. 
Despite the simplicity, it is worth noting that the use of this method is associated with 
a large loss of potential information contained in the triangular fuzzy number (i.e., sym-
metry or its lack, the width of the fuzzy range, the position on the 0X axis). The centre 
of gravity (COG) defuzzification is one of the most popular and useful techniques which 
take into account all the parameters of a fuzzy number. 

Fuzzy normalisation can be considered as a fuzzy extension of the crisp normalisa-
tion using fuzzy addition and fuzzy division [16]. In the literature, normalisation meth-
ods for both interval and fuzzy weights have been proposed [32, 46, 53, 67]. It is worth 
noting that in crisp normalisation only the individual weights need to be considered, 
while in fuzzy normalisation we have to consider all components of positive fuzzy num-
bers (the smallest, the most probable, the largest possible values), as well as the spreads 
of the fuzzy numbers. 

It should also be noticed that there is no strict consensus which of the normalisation 
procedures is the best [16, 67, 54]. For our paper, to define fuzzy weights for positive 
triangular numbers, we adopt Wang and Elhag’s [67] approach. Derived from the defi-
nition of normalised interval weights given by Wang and Elhag [67], the normalised 
fuzzy weights in the case of triangular fuzzy numbers can be defined as follows. 
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Definition 8. Let X = {x1, ..., xn} be the set of criteria. We say that the set { }1, ..., nW w w=  

is the set of normalised fuzzy criteria weights, where ( ), , , 1, 2, ..., ,k kl km kuw w w w k n= =  
defined on [0, 1] express the importance degrees of xk, if all kw  are positive fuzzy num-
bers and the following holds 
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for every k = 1, 2, ..., n. 
Let us assume that the decision-maker assigns to each criterion xk individual positive 

fuzzy weights ( ), ,k kl km kur r r r=  representing the importance of the criteria (k = 1, 2, ..., n). 
To normalise the positive fuzzy numbers, ( ), , ,k kl km kur r r r=  where rkl > 0, we apply 
Wang and Elhag’s formula [67] in the following way 
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Wang and Elhag [67] show that the normalisation formula (19) satisfies the condi-
tions (17) and (18). The condition (16) is easy for computation. 

3. Methods of criteria weighting. A short overview 

In this section, we present a short overview of the literature on the elicitation of criteria 
weights. In the literature, many criteria weighting methods have been proposed; for 
a comparison, see [61, 10, 11, 62]. Criteria weighting methods are usually classified into 
three categories: subjective weighting, objective weighting, and combination weighting 
methods. Criteria weights determined by the subjective weighting methods depend only 



 E. ROSZKOWSKA 

 

98

on the preference of decision-makers. The subjective crisp methods include the tradeoff 
method and the pricing-out method [38], the ratio method [26], the Delphi method [31], 
conjoint methods [29], the ranking ordering method [56, 58], the analytic hierarchy pro-
cess (AHP) [52], the swing method [39], the point allocation (PA) method [25], the 
direct rating (DR) method [12], the eigenvector method [59], LINear ProgrAmming of 
preference Comparisons [30], FITradeoff [2], and others [31]. 

By contrast, objective crisp weights are obtained by calculations based on the anal-
ysis of the initial data disregarding the subjective judgment information of the DM. 
They include the entropy method [31, 69, 75], the standard deviation (SD) method [24], 
the CRITIC (criteria importance through intercriteria correlation) method [24], the max-
imising deviation method [74] and ideal point method [41]. 

Fuzzy methods take into account the imprecise, vague, and incomplete information 
about criteria weights. The analytic hierarchy process is a useful weight estimation tech-
nique. In fuzzy AHP, the interval and fuzzy comparison matrixes are also used to express 
the DM’s uncertain preference information. Saaty and Vargas [53] introduce a simulation 
approach to find interval weights from interval comparison matrices. Van Laarhoven and 
Pedrycz [64] consider treating elements in a comparison matrix as fuzzy numbers, and 
they employ a logarithmic least-squares method to generate fuzzy weights. Csutor and 
Buckley [20] propose a Lambda–Max method to find fuzzy weights. Lan et al. [40] 
present a method for deriving weights from an interval comparison matrix. Wang and 
Elhag [68] suggest a goal programming method to obtain interval weights from a con-
sistent or inconsistent interval comparison matrix. Furthermore, Wang et al. [71] offer 
a linear programming method and DEA approach for generating the most favourable 
weights (LP–GFW) from pairwise comparison matrices. Wang and Zhang [72] give an 
intuitionistic fuzzy decision method based on prospect theory and the evidential reason-
ing approach in which the criteria values are intuitionistic fuzzy numbers and the infor-
mation of attribute weights is unknown. 

Some researchers suggest integrated methods for determining criteria weights. Re-
cently, several combinations or optimal weighting methods have been proposed and 
developed. Integrated methods determine the weights of criteria using both the DM’s 
subjective information and objective decision matrix information. Wang and Lee [68] 
propose a fuzzy TOPSIS method integrating subjective and objective weights. Subjec-
tive weights are assigned by decision-makers (DM) and normalised into a comparable 
scale, while objective weights are based on Shannon’s entropy theory. Ma et al. [41] put 
forward a two-objective mathematical programming model. The integrated approach by 
Fan et al. [28] is based on the integration of the DM’s fuzzy preference information on 
decision alternatives with objective decision matrix information. Wang and Parkan [66] 
integrate the DM’s fuzzy preference relation on decision alternatives, the DM’s multi-
plicative preference relation on the weights of criteria, and objective decision matrix 
information into a general model framework. 
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4. Rank ordering criteria weighting methods 

4.1. Crisp rank ordering criteria weighting methods 

Consider a multiple criteria decision-making problem with a finite set of n criteria, 
and let X = {x1, x2, ..., xn}be the set of criteria. We assume here that the weights reflect 
the relative importance of each decision criterion, and that they are normalised by mak-
ing their sum equal to 1. The input is obtained as a list of n prioritised (ranked) criteria, 
where ranks are inversely related to weights. More exactly, the criteria are weighted by 
ranks in ascending order (the most important criterion is given rank 1, the second crite-
rion rank 2, …, criterion k has rank k, and the least important criterion is given rank n). Our 
objective is to convert the list of ranks 1, 2, ..., n into numerical weights w1, w2, ..., wn for the 
n criteria. 

Step 1. Ranking the criteria according to their importance 
We have a list of n ranked criteria: 

 1 ... ... , 1, 2, ...,k nw w w k n≥ ≥ ≥ ≥ =   (20) 

Step 2. Weighting the criteria from their ranks 
The numerical weights corresponding to the ranks are derived by a mathematical 

function of its rank and the total number of criteria. Stillwell et al. [58] propose three 
functions: rank reciprocal (inverse), rank sum (linear), and rank exponent weights, while 
Solymosi and Dompi [56] and Barron [6] the rank order centroid weights. 

Rank sum weight method. In the rank sum (RS) procedure with n criteria, rank k is 
assigned the individual weight n – k + 1 which is normalised by dividing by the sum of 
the ranks [58] 
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where k is the rank of the kth criterion, k = 1, 2, ..., n. 
A generalisation of the rank sum method is the rank exponent weigh method (RE) [58]: 
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where k is the rank of the kth criterion, p a parameter describing the weights, k = 1, 2, ..., n. 
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The parameter p controls the distribution of the weights: the higher the value of p, 
the steeper the weight distribution. For p = 0, all the criteria have the same weights, for 
p = 1, we obtain the rank sum technique. 

Inverse or reciprocal weights [58]. The reciprocal weights (RS) method with n cri-
teria uses the reciprocals of the ranks: rank k is assigned the individual weight 1/k, which 
is normalised by dividing by the sum of the reciprocals 

 ( )

1

1

RR
1k n

j

kw

j=

=


  (23) 

where k is the rank of the kth criterion, k = 1, 2, ..., n. 

Rank order centroid (ROC) [56]. The rank order centroid (ROC) method uses the 
centroid (centre of mass) of the simplex defined by the ranking of the criteria; with more 
criteria, the error for ranked criteria will be much smaller. The formula is 

 ( ) 1 1ROC
n

k
j k

w
n j=

=    (24) 

where k is the rank of the kth criterion, k = 1, 2, ..., n. 

 4.2. A comparison of crisp rank ordering criteria weighting methods 

There have been several studies comparing the decision quality of different weighting 
methods. Some of them also compare weight functions and found centroid weights to 
be superior in terms of accuracy and ease of use. For instance, Olson and Dorai [45] 
compare centroid weights to AHP on a student job selection problem. They state that 
the results of the study clearly indicate that neither AHP nor the centroid approach 
would provide a tool that could be expected to totally reflect decision-maker preference. 
However, both approaches could be relied upon to generally reflect decision-maker 
preferences. They also conclude that centroid weights provide almost the same accuracy 
while requiring much less input and mental effort from decision-makers. Edwards and 
Barron [27] extend SMART into SMARTER (SMART Exploiting Ranks), using cen-
troid weights. Their paper also proposes tests for the usability of these approximations. 
Barron and Barrett [7] offer an analysis of the effectiveness of centroid weights in 
SMARTER. In another paper, Barron and Barrett [8] compare the centroid weights with 
rank sum and reciprocal (inverse) weights using a simulation study and report that all 
formulae are efficacious in determining the best multi-attribute alternative, but the ROC 
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weights are more accurate than the other rank based formulae. They also recommend 
the ROC technique as a useful tool because ROC-based analysis is straightforward and 
efficacious. Srivastava et al. [57] use simulation experiments to compare five weight 
elicitation methods, including rank sum and centroid weights; they also find centroid 
weights to be superior to other methods. Also, Jia et al. [33] perform a detailed comparison 
of several weighting schemes and use simulation to compare centroid and rank sum weights 
with equal weighting and ratio weights. They report that equal weights do not always per-
form well, but rank ordered centroid weights based on an ordering of criteria only lead to 
the same choices as actual weights do. Noh and Lee [44] compare centroid weights with 
AHP and fuzzy methods and find that the simplicity and ease of use of centroid weights 
make it a practical method for determining criteria weights. Barron and Barrett [8] suggest 
that rank reciprocals are more accurate than rank sum, but in another paper Jia [34] prove 
that if knowledge of weights is highly limited, then rank sum weights are better. In a series 
of papers, Danielson and Ekenberg [21, 22] analyse the relevance of rank ordering 
weighting methods and suggest more robust methods as candidates for modelling and ana-
lysing multi-criteria decision problems. Alfares and Duffua [1] devise an empirically devel-
oped, evaluated, and validated methodology, based on a set of experiments involving stu-
dents, to convert ordinal ranking of several criteria into numerical weights. 

The decision regarding weight determination will strongly influence the final results of 
decision-making. The choice of the weighting method depends mainly on the knowledge of 
the underlying distributions of the “true” weight. The ROC approach to rank order has 
a clear statistical basis and interpretation, whereas other methods take a more heuristic ap-
proach. The rank sum weight (RS), reciprocal weight (RR), and centroid (ROC) methods 
differ as regards the steepness of the true weights. ROC weights are “steeper”, while RS 
weights are much “flatter”. In the ROC method, relatively larger weights are assigned to 
more important criteria. RS weights decrease linearly from the most important to the least 
important, while RR weights descend aggressively from the most important to the least im-
portant. For a comparison of weight distribution for several numbers of criteria, see [50]. 

5. Fuzzy rank ordering criteria weighing methods 

Since human judgments, including preferences, are often vague and cannot be ex-
pressed by exact numerical values, the application of fuzzy concepts in elicitation weights 
is deemed relevant. In this part of the paper, we propose extension crisp rank-ordering cri-
teria weighting methods. The methods built on the ideas of rank order techniques take 
into account imprecise information about rank. The fuzzy rank sum, fuzzy rank recip-
rocal and fuzzy centroid weights techniques are proposed. The weights obtained for 
each criterion are triangular fuzzy numbers. The input is obtained as a list of n prioritised 
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(fuzzy ranked) criteria, with ranks inversely related to weights. Fuzzy ranks are repre-
sented by positive triangular numbers as follows 

 ( ) 2 1 2 10.5, , 0.5 , , , 1, 2, ...,
2 2

k kk k k k k k n− + = − + = = 
 

   (25) 

Note that from formulas (14) and (15), we have ( ) ,Xd k k=  where X ∈ {FOM, COG}. 

The criteria are weighted by fuzzy ranks in ascending order (the most important criterion 
is given rank 1, the second criterion rank 2,  ..., and the least important rank ).n  We have:

.k X r Xw w k r⇔      From formulas (14) and (15), we have ( ) ( ) .X X Xk r d k d r⇔ ≤    

Hence, ,k X rw w k r⇔ ≤   where X ∈ {FOM, COG}. Thus, the fuzzy weight ordering 
preserves the ascending order of fuzzy ranks and, after defuzzification, the ascending 
order of crisp ranks.

Step 1. Ranking the criteria according to their importance 
We have a list of n fuzzy ranked criteria. 

 1 ... ... , 1, 2, ...,k nw w w k n=       (26) 

In the latter analysis, we use defuzzification formulas (9) and (10) but other methods 
for ranking fuzzy numbers can be used [17, 13]. 

Step 2. Weighting the criteria from their fuzzy ranks 
Once the fuzzy ranks are assigned, the fuzzy weights corresponding to the fuzzy 

ranks can be derived in different ways 

Fuzzy rank sum weight method. In the FRS procedure with n criteria, rank k  receives 
the individual weight ( )1 0.5, 1, 1.5n k n k n k n k− + = − + − + − +  and next is fuzzy 
normalized using formula (19) 
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(27)

 



Extension of rank ordering criteria weighting methods in fuzzy environment 

 

103

Fuzzy reciprocal weights method (FRS). The FRS method with n criteria uses the 
reciprocal of the fuzzy ranks, rank k  receives the individual weight 

 1 1 1 1, ,
0.5 0.5

k
k k k

−  =  + − 
   

which is fuzzy normalised using the formula (19) 
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Fuzzy rank order centroid (FROC). In the FROC, the procedure with n criteria, rank k  
receives the individual weight 
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   thus the formula for the fuzzy rank order centroid fuzzy 

weights is the following (19) 
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Lemma. Let ( ) ( , , )k kl km kuw FA w w w=  for k = 1, 2, ..., n. We have the following: 
i) ( )FOM ( ) ( ),k kd w FA w A=   

ii) 
1

1,
n

jm
j

w
=

=   

iii) 
1,

1,
n

kl ju
j j k

w w
= ≠

+ ≥   

iv) 
1,

1.
n

ku jl
j j k

w w
= ≠

+ ≤   

where A ∈ {RS, RR, ROC}, FA = {FRS, FRR, FROC}, k = 1, 2, ..., n. 
Proof. i) follows for: FS from (21), (27) and (12); RR from (23), (28) and (12); ROC 

from (24), (29) and (12); (ii) follow from (27) after computation; (iii) and (iv) from (19) 
(see [67]). 

6. Numerical example 

To illustrate the input of rank order weighting methods in multi-criteria decision-mak-
ing a numerical example is supplied. Three rank ordering crisp criteria weighing techniques 
(sum weight, reciprocal weights, and centroid weights), as well as three fuzzy rank ordering 
criteria weighing methods (fuzzy sum weight, fuzzy reciprocal weights and fuzzy centroid 
weights) were used. 

Example. Let us assume that our multi-criteria decision problem consists of the set 
of four alternatives A1, A2, A3, A4, and the set of four criteria X1, X2, X3, X4, where, for 
simplicity, all criteria are of the benefit type. Let us also assume, for simplicity, that only 
fuzzy weights are considered in this example. The decision matrix is given in Table 1. 

Table 1. The decision matrix 

 X1 X2 X3 X4 
A1 15 5 4 6 
A2 18 4 7 4 
A3 12 8 10 2 
A4 17 4 3 3 

 
At the first step, a set of four alternatives is evaluated using SAW (simple additive 

weighting) and FSAW (fuzzy simple additive weighting) methods. SAW (also known 
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as weighted linear combination or scoring method) is a simple and most often used 
multi-criteria technique [18] based on the weighted average. An evaluation score is 
calculated for each alternative by multiplying the normalised value assigned to the 
alternative of that criterion by the weights of relative importance and then by summing 
the products for all criteria. The normalised values for the benefit criteria (more is 
better) are calculated using the following formula 

 
min

max min
ij iji

ij
ij ijii

x x
c

x x

−
=

−
 (30) 

and for cost criteria (less is better) using the following formula 
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x x
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x x

−
=

−
 (31) 

where xi j is the score of alternative i concerning  jth criterion. 
In SAW, the final score of each alternative is calculated as follows (crisp weights) 

 
1 1

n n

i ij j ij
j j

SAW c w r
= =

= =   (32) 

where SAWi is the score for alternative i, cij is the normalised value of ith alternative 
concerning  jth criterion, wij is the weight of  jth criterion, rij is the weighted normalised 
value of ith alternative concerning  jth criterion. The final scores SAWi are ranked: the 
higher the value of SAWi, the higher the rank. 

SAW can be easily extended to fuzzy values for alternatives as follows [51, 77] 
(fuzzy weights) 

 
1 1

ˆFSAW
n n

i ij j ij
j j

c w r
= =

= =   (33) 

where FSAWi is the fuzzy score for alternative i, cij is the normalised value of ith alterna-
tive concerning jth criterion and jw  is the fuzzy weight of jth criterion, îjr is the fuzzy 
weighted normalised value of ith alternative concerning  jth criterion1. 

 _________________________  
1Let us also note that some other fuzzy extensions of the weighted average operations are proposed in [47]. 
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Table 2. Values for criteria weights  
given by different formulas for four criteria 

Crisp weights w1 w2 w3 w4 
Rank sum weight (RS) 0.40 0.30 0.20 0.10 
Reciprocal weight (RR) 0.48 0.24 0.16 0.12 
Rank order centroid (ROC) 0.52 0.27 0.15 0.06 

 
The values for crisp weights given by different formulas for the four criteria are 

presented in Table 2, and for the fuzzy weights in Table 3. 

Table 3. Approximations for fuzzy criteria weights given by different formulas for four criteria 

Fuzzy weights 1w   2w   3w  4w   
Fuzzy rank sum 
weight (FRS) (0.32, 0.40, 0.50) (0.23, 0.30, 0.39) (0.14, 0.20, 0.28) (0.05, 0.1, 0.17) 

Fuzzy reciprocal 
weight (FRR) (0.33, 0.48,0.69) (0.13, 0.24, 0.36) (0.09, 0.16, 0.24) (0.07, 0,12, 0.17) 

Fuzzy rank order centroid 
(FROC) (0.40, 0.52,0.67) (0.17, 0.27, 0.37) (0.09, 0.15, 0.20) (0.04, 0.06, 0.09) 

 
In FSAW, since the final rating of each alternative is also a fuzzy number, the last 

step requires that fuzzy numbers be ranked. For our example, defuzzification formulas 
(12) and (13) are used. Next, the FSAW function is used to rank the alternatives. Table 4 
provides the values computed by formula (32) and the ranking of the alternatives based 
on various criteria weighting methods. 

Table 4. Scores for SAW and rank ordering of alternatives  
for different criteria weighting methods 

Alternative 
Weight method 

RS RR ROC 
Value Rank Value Rank Value Rank 

A1 0.404 3 0.443 2 0.409 4 
A2 0.564 1 0.631 1 0.636 1 
A3 0.500 2 0.400 4 0.420 3 
A4 0.358 4 0.430 3 0.448 2 

 
Note that we obtain different alternative rank orderings, depending on weights de-

termination. From Table 4, it can be shown that the preferred order of alternatives can 
be A2 ≻ A3 ≻ A1 ≻ A4 (RS weight), A2 ≻ A1 ≻ A4 ≻ A3 (RR weight) or A2 ≻ A4 ≻ A3 ≻ A1 
(ROC weights). 

Table 5 provides the values computed by formula (33), while Table 6 provides the 
ranking of the alternatives based on various criteria weighting methods and defuzzifi-
cation formulas. 



Extension of rank ordering criteria weighting methods in fuzzy environment 

 

107

Table 5. Fuzzy scores of alternatives for FSAW  
for different fuzzy criteria weighting methods 

Alternative Weight method 
FRS FRR FROC 

A1 (0.288,0.404, 0.558) (0.280, 0.443, 0.639) (0.295, 0.409, 0.546) 
A2 (0.425, 0.564,0.745) (0.416, 0.631, 0.912) (0.471, 0.636,0.829) 
A3 (0.370, 0.500, 0.650) (0.220, 0.400, 0.600) (0.260, 0.420, 0.570) 
A4 (0.279, 0.358,0.459) (0.293, 0.430, 0.618) (0.343, 0.448, 0.581) 

Table 6. The ranking of alternatives for FSAW  
for different fuzzy criteria weighting and defuzzification formulas 

Alternative 
Weight method 

FRS FRR FROC 
dFOM dCOG dFOM dCOG dFOM dCOG 

A1 0.404 (3) 0.416 (3) 0.443 (2) 0.454 (2) 0.409 (4) 0.4168 (3) 
A2 0.564 (1) 0.578 (1) 0.631 (1) 0.653 (1) 0.636 (1) 0.6455 (1) 
A3 0.500 (2) 0.513 (2) 0.400 (4) 0.407 (4) 0.420 (3) 0.4167 (4) 
A4 0.358 (4) 0.366 (4) 0.430 (3) 0.447 (3) 0.448 (2) 0.4575 (2) 

 
Note that the proposed fuzzy rank ordering criteria weighting techniques are simply 

extensions of the equivalent methods for crisp weights using the FOM defuzzification 
formula (12). We can also see that the triangular numbers representing weights are not 
symmetrical, so the defuzzification formula (13) for COG gives different results than 
the analogous formula (12) for FOM does, but the ordering obtained is the same as in 
the crisp case for FRS and FRR method. Other ranking techniques can provide different 
results. In the analysis, we have to take into account not only the steepness of weight 
but also the properties of fuzzy numbers representing the fuzzy weights in the selection 
of the most appropriate fuzzy weights elicitation technique. 

Thus finally, a set of four alternatives is evaluated using TOPSIS (technique for order 
performance by similarity to ideal solution) and FTOPSIS (fuzzy technique for order per-
formance by similarity to ideal solution) methods. TOPSIS, proposed by Hwang and 
Yoon [31], is one of the most known methods for solving MCDM problems. This method 
is based on the concept that the chosen alternative should have the shortest distance to 
positive ideal solution (PIS) (the solution which minimises the cost criteria and maximises 
the benefit criteria) and the farthest distance to negative ideal solution (NIS). 

The positive ideal solution and the negative ideal solution are defined as follows: 

 ( ) ( )1 1PIS = , ..., max , ...,n i ini
v v r r+ + =   (34) 

 ( ) ( )1 1NIS = , ..., min , ..., minn i ini i
v v r r− − =  (35) 
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Next, the values of distances of the alternative from PIS and NIS are calculated 
using the Euclidean method 

 ( ) ( )2

1
,  PIS

n

i i ij j
j

d A r v+ +

=

= −   (36) 

 ( ) ( )2

1
,  NIS

n

i i ij j
j

d A r v− −

=

= −   (37) 

The relative closeness to the ideal solution is defined as follows: 
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( ) ( )
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d A d A

−

− +=
+

  (38) 

where 0 ≤ TOPSISi  ≤ 1, i = 1, 2, ..., m. 
The fuzzy positive ideal solution and the fuzzy negative ideal solution are defined 

as follows: 

 ( ) ( )1 1ˆ ˆ ˆ ˆFPIS = , ..., max , ..., maxn i ini i
v v r r+ + =   (39) 

 ( ) ( )1 1ˆ ˆ ˆ ˆFNIS = , ..., min , ..., minn i ini i
v v r r− − =   (40) 

The values of distances of the alternative from FPIS and FNIS are calculated using 
the vertex distance between two triangular numbers in the following way 

 ( ) ( )
1

, FPIS , , 1, 2, ...,
n

i i ij j
j

d A d r v i m+ +

=

= =     (41) 

 ( ) ( )
1

,  FNIS , , 1, 2, ...,
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i i ij j
j

d A d r v i m− −
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= =     (42) 

where )ˆ,ˆ( BAd  is the vertex distance between two triangular numbers ˆ ˆ,A B  (see for-
mula (11)). 

The relative closeness to the fuzzy ideal solution is defined as follows 

 ( )
( ) ( )

,  FNIS
FTOPSIS

, FNIS  + ,  FPIS
i i

i
i i i i

d A
d A d A

−

− +=   (43) 

The TOPSIS function is used to rank the alternatives. Table 7 provides the values 
computed by formula (43) and the ranking of the alternatives based on various criteria 
weighting methods. 
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Table 7. Scores for TOPSIS and rank ordering of alternatives 
for different criteria weighting methods 

Alternative 
Weight method 

RS RR ROC 
Value Rank Value Rank Value Rank 

A1 0.407 4 0.455 3 0.438 3 
A2 0.570 1 0.657 1 0.654 1 
A3 0.467 3 0.368 4 0.371 4 
A4 0.472 2 0.562 2 0.572 2 

 
Note that we obtain different alternative rank orderings, depending on weights de-

termination. From Table 7, it can be shown that the preferred order of alternatives can 
be A2 ≻ A4 ≻ A3 ≻ A1 (RS weight), or A2 ≻ A4 ≻ A1 ≻ A3 (RR and ROC weights). It is 
also worth noting that we obtain different ranking than in SAW procedure. However, in 
all rankings, the alternative A2 is the best. 

Finally, Table 8 provides the values computed by formula (43) and the ranking of 
the alternatives based on various criteria weighting methods. 

Table 8. The ranking of alternatives for FTOPSIS  
for different fuzzy criteria weighting  

Alternative 
Weight method 

FRS FRR FROC 
Value Rank Value Rank Value Rank 

A1 0.409 3 0.441 2 0.412 4 
A2 0.562 1 0.632 1 0.635 1 
A3 0.499 2 0.402 4 0.417 3 
A4 0.353 4 0.430 3 0.448 2 

 
Note that we obtain alternative rank orderings, depending on weights determination. 

From Table 8, it can be shown that the preferred order of alternatives can be A2 ≻ A 3 ≻ 
A1 ≻ A4 for FRS method, A2  ≻ A1 ≻ A4 ≻ A3 for FRR method, and A2 ≻ A4 ≻ A3 ≻ A1 for 
FROC method. Also, in all rankings the alternative A2 is the best. 

7. Conclusions 

Criteria weights are usually set subjectively, which means that they are more or less 
uncertain. Due to their vagueness and subjectivity, crisp data may be inadequate for the 
estimation of weights in real-life situations. When performance rating and weights can-
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not be given precisely, fuzzy set theory can introduce an uncertainty of human judg-
ments into the model. Thus, the estimation of the relative weights of alternatives based 
on fuzzy sets plays an important role in the decision-making process. 

In this paper, it has been shown how this kind of uncertain information about rank can 
be expressed employing fuzzy sets theory tools. To express uncertain normalised weights, 
normalised fuzzy weights, represented by fuzzy numbers, are introduced. Fuzzy rank or-
dering criteria weighing methods are useful weight estimation techniques and decision-
making tools. These methods are selected for their simplicity and effectiveness. A numer-
ical example is provided to demonstrate the capabilities of the proposed model. One of 
the practical possibilities of using the presented approach is evaluation negotiation issues 
while building negotiation scoring system. In the papers [77, 78] the fuzzy FSAW and 
fuzzy TOPSIS are used for scoring the negotiation offers in ill-structured negotiation 
problems. The rank ordering criteria weighting methods (crisp and fuzzy) are less cogni-
tively demanding and may reduce biases in weights elicitation producing weights accepta-
ble by DM. They can be also easily implemented in decision support systems. 

However, the procedure for assigning fuzzy weights needs further elaboration. Since 
weights have fuzzy and uncertain characteristics, the choice of an appropriate fuzzy rank 
ordering weighting method should be supported by the decisionmakers’ experience and 
goals. It should also be taken into consideration that there are several fuzzy multi-criteria 
techniques where fuzzy rank ordering weights can be applied. In the paper, we only use 
FSAW and FTOPSIS. It is worth noting that the defuzzification process in FSAW procedure 
may lose “lots of messages” not to mention that the decision-maker can be confused which 
of the defuzzification techniques will be more appreciative to him, so other techniques using 
ordered fuzzy numbers, such as fuzzy TOPSIS, can be useful. 
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