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NON-EXTREME VARIANT OF THE SUPPORT MANAGEMENT 
MODEL OF A PRODUCTION-SUPPLY SYSTEM 

WITH THE STRUCTURAL PROCESS OF PRODUCT SUPPLY 

The paper is dedicated to building a probabilistic analysis method of functioning a production-
supply system with the structural process of product supply. This analysis is carried out in the non-
extreme variant of warehouse filling level to which two independent streams of production (of the 
product) are directed by means of a transport subsystem. For this variant, four sets of equations that 
fulfilled the density function determining state probabilities of a multidimensional process characteriz-
ing operations of the system examination were derived.  
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1. Introduction 

Systems cooperating the production and supply systems are the object of research 
in various publications (e.g., [1‒4, 9, 10, 12‒18]). This article is a continuation of the 
research carried out in works [4, 6, 9, 10, 12, 16, 17], and especially in [5–7]. It is ded-
icated to building a new probabilistic model of the operation system in the non-extreme 
variant of warehouse filling level, taking into account the structural process of product 
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delivery. Four sets of equations were introduced, which fulfil the density function prob-
ability in the case when the warehouse filling level does not reach limited levels. 

2. Description of the system operation 

To the recipient E (e.g., power station), whose functioning is conditioned by the 
constant requirement a of product units (e.g., Carbon), the stream of production results 
y1(t), y2(t) realized by the production subsystem P is delivered in a continuous manner 
(e.g., by conveyor belts, pipelines, transmission lines). Random changes of the processes 
y1(t), y2(t) and unplanned breaks in work (failures) of the transport subsystem T consisting 
of the subsystem T1 and the subsystem T2, are the factors decreasing the efficiency of 
the tested system. This efficiency can be increased while reducing the potential for in-
terruptions in the supply of the adequate quantity of the product to the recipient E by 
locating in the recipient’s E surroundings the warehouse-container M with a specific 
volume V. The product streams y1(t), y2(t) are collected in the subsystem M, if the filling 
level z(t) of the warehouse M does not exceed V and when y1(t) > a or y2(t) > a. If the 
momentary value of the element M is equal to V, y1(t) > a or y2(t) > a, then the size of 
streams y1(t), y2(t) is limited to the level a. When the warehouse M is empty and y1(t) < a 
and y2(t) < a, then a situation unfavourable to the recipient E arises. The probability 
determination of this event has practical meaning. 

Cooperation of subsystems , ,P T M  and E is presented in Fig. 1. 

 
Fig. 1. Overall scheme of the tested system functioning 

The inputs w1(t), w2(t) of the subsystem M can be considered in two variants: 
 the aggregated variant: w1(t) = y1(t), w2(t) = y2(t); processes w1(t), w2(t) together 

represent the production subsystem P  and the transport subsystem T  [5, 6], 
 the structural variant: w1(t) = y1(t)v1(t), w2(t) = y2(t)v2(t); processes w1(t), w2(t) ex-

plicitly take into account both the production subsystem P  (product streams y1(t), y2(t)), 
and the transport subsystem T (processes v1(t), v2(t)). 

The processes v1(t), v2(t) characterizing operation of the subsystem T are specified 
by the formula: 
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1 when the subsystem  is in the working state
( )

0 hen the subsystem  is not working (is in breakdown state) 

i

i

i

T
v t

w T

 


for i = 1, 2 

The process v1(t) describes the operation of the subsystem T1, and the process v2(t) 
– operation of the subsystem T2. 

Let us denote by λ1, λ2, 1, 2 intensities of formation and disappearance of the sub-
system T1 breakdown (indicator 1) and the subsystem T2 (indicator 2). We denote the 
states of the transport subsystem T  by A11, A10, A01, A00, where 1 indicates the working 
state, and 0 – the breakdown state (e.g., the state A10 is the working state of the subsys-
tem T1 and the breakdown of the subsystem T2). Allowable transitions between the states 
are shown in Fig. 2: 

 

Fig. 2. Schemes of transitions between the states of the transport subsystem T  

It is assumed that the operation process of the transport system T is independent of 
the product streams of the production subsystem .P  

3. Theoretical characteristics of the system operation  

The functioning of the examined system is described by the processes (y1(t), y2(t), 
v1(t), v2(t), z(t). We assume that the subsystems T1 and T2 operate independently, and 
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the processes y1(t) and y2(t), controlling the warehouse filling level z(t), are Markov’s 
processes of a finite number of states. Let us denote states of the supply product stream 
y1(t) to the subsystem M by y11, y12, ..., y1n, and states of the product stream y2(t) by y21, 
y22, ..., y2m. 

Intensities of the transition between states (levels of product delivery) of the process 
y1(t) and y2(t) are denoted respectively by (1) (2)and ,jk sk  as it is schematically written in 
the form: 

 
(1)

11
for  jk

kj
y j ky    (1) 

 
(2)

2 2 for  si
s iy y s i   (2) 

Receiving values supporting the management process of the examined system re-
quires designation of the probabilities of the system states P(y1(t), y2(t), v1(t), v2(t), z(t)), 
and hence the likelihood that at a fixed point of time t the supply stream of the product 
y1(t) will be at the state 

 y1: y11, y12, ..., y1n (3) 

the supply stream y2(t) will have the state 

 y2: y21, y22, ..., y2m (4) 

the process v1(t) describing the T1 subsystem operation will be at the state 

 u1: 1, 0 (5) 

the process v2(t) describing the T2 subsystem operation will have the state 

 u2: 1, 0, (6) 

and at the same time, the level of filling of the warehouse (container) will be z. 
For each specific z, 0 < z < V, this probability disappears: 

P(y1(t), y2(t), v1(t), v2(t), z(t) = z) = 0 

because there are uncountably many values of z  (0, V). 
Therefore, the probability density function 1 1

2 2

,
, ( , )k

i

x u
x uf z t  is introduced, defined by the 

formula: 
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, ( ) ) ( , )k

i

k i
b

x u
x u

a

P x t x v t u x t x v t

u a z t b f z t dz

  

    
 (7) 

where 0  a1 < b1  V, and x1k is an auxiliary introduced k-state of the process x1(t) 
= y1(t) – a(x1k = y1k – a, k = 1, 2, ..., n), and x2i means the i-state of the process x2(t)  
= y2(t) – a(x2i = y2i – a, i = 1, 2, ..., m). 

The density functions 1 1
2 2

,
, ( , )k

i

x u
x uf z t can be treated as a function sequence of two var-

iables z, t numbered respectively by the states x1k, u1, x2i, u2 of the processes x1(t), v1(t), 
x2(t), v2(t). 

Analysis of the examined system functioning will be conducted in three variants, 
namely: 

 Partial filling of the warehouse, 0 < z(t) < V,  
 Lower barrier z(t) = 0,  
 Upper barrier, z(t) = V. 
These cases should be considered individually because they correspond to different 

operating conditions of the system. 
In order to obtain quantitative characteristics aimed at improving the efficiency of 

the system operation (Fig. 1), it is sufficient to determine the probabilities (7) and P(x1(t) 
= x1k, v1(t) = u1, x2(t) = x2i, v2(t) = u2, z(t) = 0), P(x1(t) = x1k, v1(t) = u1, x2(t) = x2i, v2(t)  
= u2, z(t) = V). Equation (7) expresses the probability that at a fixed time t the inventory 
level in the warehouse M belongs to the range (a1, b1), but the stages of the processes 
x1(t), v1(t), x2(t), v2(t) are respectively x1k, u1, x2i, u2. The meaning of the other two prob-
abilities is analogous. The probability P(x1(t) = x1k, v1(t) = u1, x2(t) = x2i, v2(t) = u2,  
0 < z(t) < V) we find from the formula 

 
 

1
1

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2 1 1
0

( ) , ( ) , ( ) , ( ) , 0 ( )
( ) ,  ( ) , ( ) , ( ) , ( )lim

k i

k i
a
b V

P x t x v t u x t x v t u z t V
P x t x v t u x t x v t u a z t b




     
        

To calculate the probability defined by Eq. (7), the method of determining the den-
sity functions 1 1 1 1

2 2 2 2

,1 ,1 ,0 ,0
, 1 ,0 ,1 ,0( , ), ( , ), ( , ), ( , ),k k k k

i i i i

x x x x
x x x xf z t f z t f z t f z t and should be given. 

4. Non-extreme state of the warehouse filling 

Analysis of the examined system will be carried out in the first variant, that is, when 
the level of the warehouse M inventory z(t) satisfies the condition: 
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 0 < z(t) < V (8) 

In this variant, the transport subsystems T1 and T2 can supplement the warehouse 
filling, and the recipient E has his demand guaranteed. 

Further, we derive equations which satisfy the above-mentioned four probability 
density functions. In order to obtain these equations, the formula for differentiable func-
tions, known as Taylor’s formula, will be used 

 ( , )( , ) ( , ) ( )h z th z z t h z t z o z
z


      


 (9) 

Where )( zo  means the infinitely small value of an order higher than z: 

 
Δ 0

(Δ )lim 0
Δz

o z
z

  (9a) 

Now, we will derive an equation that will fulfil the density function 1

2

,1
,1 ( , ).k

i

x
xf z t  Un-

der the terms of the system operation in the variant (8), we have: 
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(10)

 

where (see Figs. 1, 2) 

 λ = 1+2  (11) 

 (1) (1) (2) (2),k kl i il
l k l i

   
 

     (12) 
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The meaning of the relation (10) is as follows: the first element in this equation informs 
about the probability of remaining in the state (x1k,1, x2i,1). This chance is 1 minus the sum 
of the output intensities from the states (x1k,1, x2i,1) (e.g., [8]). In our case, the output 
intensity from the state x1k is equal to (1)

k  (Fig. 1, Eq. (12)), from the state x2i is equal 
to (2)

i (Fig. 2, Eq. (12)), and from the state (1, 1) is equal to λ (Fig. 2, Eq. (11)). In this 
case, the fact that in “simple” processes the double state changes were of an order higher 
than τ was exploited. This is taken into account by asymptotic equality ≈, which means 
that the term o(τ) is omitted, that satisfies the condition 

 
0

( )lim 0


 


  (13) 

Regardless of the state changes x1k and x2i, the changes in the level of filling ware-
house z followed. They are controlled by both the process y1(t), as well as by the pro-
duction stream y2(t). If at the time t there was the state (x1k, x2i), then at the time τ the 
warehouse state was (x1k + x2i + a)τ. Thus, when at the time t + τ the warehouse filling 
level was z, then at the moment t it had to be z – (x1k + x2i + a)τ. This very fact is taken 
into account in the first element of the Eq. (10). Similarly, the content of other elements 
is explained. Analogously to Eq. (10), the other three equations are derived: 
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where  = 1+2. We will transform Eq. (10) using Taylor’s formula (9): 



 T. GALANC et al. 

 

50

1

2

1

21

2

1

21

2

,1
,1

1 2 1 2

(1) (2)

,1 (1)
,1 1 2 1 2

( , )

( , )
( , ) [ ( ) ] [ ( ) ]

1 ( )

( , )
( , ) [ ( ) ] [ ( ) ]

k

i

k

ik

i

k

ik

i

x
x

x
xx

x k i k i

k i

x
xx

x k i k i k k
k k

f z t

f z t
f z t x x a x x a

z

f z t
f z t x x a x x a

z

f



  

  

    




           
  

    
           

  




1

21

2

1

21

2

,1
,1,1 (1)

,1 1 2 1 2

,1
,1,1 (1) (2)

,1 1 2 1 2

( , )
( , ) [ ( ) ] [ ( ) ]

( , )
( , ) [ ( ) ] [ ( ) ]

k

ik

i

k

ik

i

x
xx

x k i k i k k
i i

x
xx

x k i i k i k k i i

f z t
z t x x a x x a

z

f z t
f z t x x a x x a

z

    

     











  


      


          
  

           
  



1

21

2

1

21

2

1

21

2

,1
,0,1

,0 1 1 2

,1
,0,1 (1)

,0 1 1 2

,1
,0,1

,0 1

( , )
( , ) [ ] [ ]

( , )
( , ) [ ] [ ]

( , )
( , ) [

k

ik

i

k

ik

i

k

ik

i

k k
i i

x
xx

x k k

x
xx

x k k k k
k k

x
xx

x

f z t
f z t x x

z

f z t
f z t x x

z

f z t
f z t x

z

    

     











  


       
  

       
  


  







'1

'21

2

1

21

2

2

(2)
1 2

(1) (2)
1 1 2

,

,0
,1,0

,1 2 2 1

,

] [ ]

( , )
( , ) [ ] [ ]

( , )
( , ) [ ] [ ]

k

ik

i

k

ik

i

i

k k i i
i i

x
xx

x k k k k i i
k k i i

x
xx

x i i

x

x

f z t
f z t x x

z

f z t
f z t x x

z

f

     

      

    








   
  

    
  
       

  
       

  







1

21

1

21

2

1

21

2

,0
,1,0 (1)

1 2 1

,0
,1,0 (2)

,1 2 2 1

,0
,1,0

,1 2

( , )
( , ) [ ]

( , )
( , ) [ ] [ ]

( , )
( , ) [ ]

k

ik

k

ik

i

k

ik

i

x
xx

i k k
k k

x
xx

x i i i i
i i

x
xx

x i

f z t
z t x

z

f z t
f z t x x

z

f z t
f z t x

z

   

     

 


















  




    
  

       
  


   







'

(1) (2)
2 1

,

[ ]i k k i i
k k i i

x       
 

   
  



 

(17)

 

We shall now apply successively the following operations to Eq. (17): 
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 let us move the function 1

2

,1
,1 ( , )k
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x
xf z t  to the left side of Eq. (17), 

 let us divide both sides of the resulting formula by , 
 let us move on both sides to the border with   0. 
As a result of these operations, the asymptotic equation (17) passes into (18) on the 

basis of the formulas (13) and (9a). Equation (18) presents equations which satisfy the 
density function 1

2

,1
,1 ( , )k

i

x
xf z t  specifying the probabilities expressed by the Eq. (7). 
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for 0 < z < V, k = 1, 2, ..., n, i = 1, 2, ..., m. 
Using Taylor’s formula to the Eqs. (14)–(16) similarly to Eq. (17), then three oper-

ations given earlier, we obtain three equations that fulfil the other density functions 
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for 0 < z < V, k = 1, 2, ..., n, i = 1, 2, ..., m. 
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for 0 < z < V, k = 1, 2, ..., n, i = 1, 2, ..., m. 
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for 0 < z < V, k = 1, 2, ..., n, i = 1, 2, ..., m. 
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5. Summary 

Taking into account the structural process of the product supply when, in the explicit 
way, both the production subsystem and the transport subsystem have an impact on the 
state of filling the warehouse, four equations that satisfied the probability density func-
tions were derived. These equations constitute the probabilistic description of the ex-
amined system in the case when this state does not reach the limit values. In the next 
research work, a system operation analysis in other variants of its operation will be pre-
sented. The result expressed by the relations (18)–(21), together with the probabilistic 
description of the examined system work in the case of both barriers, will create oppor-
tunity to obtain characteristics of the system enabling to increase efficiency of its oper-
ations. 
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