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The authors calculate the steady-state availability and the cost-benefit analysis for three different 
systems with mixed standby (cold standby, warm standby) and imperfect coverage. The coverage factor 
is the same for an operative-unit failure as that for a warm standby-unit failure. The failure times of the 
operative unit and the warm standby unit are exponentially distributed while the repair time is arbitrarily 
distributed. The supplementary variable technique is applied to derive the steady-state availability for 
three different configurations. For each system, the steady-state availability is calculated according to two 
different cases for repair time distributions, such as exponential, and k-stage Erlang, where k = 2, 3. The 
configurations are compared as based on availability and cost/benefit at a special numerical value given 
to the distribution parameters. 
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1. Introduction 

Reliability theory is a substantial concept at the planning, design and operation 
stages of several complicated systems. But, in fact, we deal with a number of complex 
systems consisting of one or more parts, and a failure of any of the parts results in the 
decrease of competence of whole systems, and, as a result of it, the reliability of the 
system decreases. Therefore, the preferable maintenance of such parts produce the best 
reliability and then only we can realize the market,s needs of reliability, effectiveness, 
price, and performance of that system. On the other hand, it may not be economical to 
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always obtain a higher order of reliability through the procedure preventive mainte-
nance, thus the maintenance and repair at the appropriate time may lead to a high degree 
of availability. Regardless of these, in the literature, many attempts have been made by 
the researchers to analyze the reliability of the system using various approaches [3–8, 
10, 11, 14–17] studied the cost-benefit analysis for three different configurations con-
taining warm standby units with general repair times. Kuo et al. [11, 12] calculated the 
reliability, the steady-state availability, and the cost/benefit analysis of four different 
systems with mixed standby components. Wang et al. [17] deduced the optimal system 
when they examine four different systems with warm standby unit and the switching is 
imperfect. El-Sherbeny [1, 2] studied the cost function in the presence of mixed standby 
components. El-Said and El-Sherbeny [9] investigated the impact of preventive mainte-
nance on two different systems, containing two operative units. 

The article is devoted to searching for the optimal system from the three studied 
taking into consideration the existence of mixed standby units and imperfect coverage. 
This article is based on three main axes The first axis is to present a recursive method, 
using the supplementary variable technique and treating the supplementary variable as 
the remaining repair time, to develop the steady-state availability (Avi) for availability 
model i, where i = 1, 2, 3. The second axis is the explicit expressions for the Avi  for two 
different repair time distributions such as exponential (M), and k-stage Erlang (Ek), 
where k = 2, 3. The third axis is to compare the three configurations with their cost/ben-
efit ratio as based on assumed numerical values given to the system parameters. 

2. Description of the system 

The present paper is devoted to considering the requirements of a 10 MW power 
plant. We assume that generators are available in units of 10 MW and 5 MW. Standby 
generators are always necessary in case of failure. We also assume that the switchover 
time from warm standby unit to the operating unit, from cold standby unit to warm 
standby unit, from failure to repair, or from repair to cold standby unit (or operating unit 
if the system is short) is instantaneous. Operating units and warm standby units can be 
considered repairable. Each of the operating units fails independently of the state of the 
others and has an exponential time-to-failure distribution with parameter .  

Whenever one operating unit fails, a warm standby moves into operation if any is 
available, and a cold standby is put on warm standby state if any is available. We now 
assume that when a warm standby moves into an operating unit state, its failure charac-
teristics will be that of an operating unit, and when a cold standby moves into a warm 
standby state, its failure characteristics will be that of a warm standby. We also assume 
that each of the available warm standby units fails independently of the state of all the 
others and has an exponential time-to-failure distribution with parameter  0 .      
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When an operating unit (or warm standby unit) fails, it may be immediately de-
tected, located, and replaced with a coverage probability c by a standby if one is avail-
able. It is assumed that the replacing time is instantaneous. We further assume that the 
coverage factor is the same for an operating-unit failure as that for a standby-unit failure 
and is denoted by c. However, we define the unsafe failure state of the system as anyone 
of the breakdowns is not covered. We continue with the assumption that operating unit 
failure (or warm standby unit failure) in the unsafe failure state is cleared by a reboot. 
Reboot delay takes place at the rate  for an operative unit (or warm standby unit) which 
is exponentially distributed. The system fails when the standby units are emptied which 
we define as the state of safe failure.  

It is assumed that the times to repair of the units are independent and identically 
distributed (i.i.d.) random variables having a distribution ( ) ( 0),B u u   a probability 
density function ( )( 0)b u u   and mean repair time b1. If one unit is in repair, then arriv-
ing failed units have to wait in the queue until the server is available. Let us assume that 
failed units arriving at the server form a single waiting line and are served in the order 
of their arrivals. Suppose that the server can serve only one operating unit (or warm 
standby unit) at a time and that the service is independent of the arrival of the units. 
Once a unit is repaired, it is as good as new. 

The following configurations are considered. The first configuration is a serial sys-
tem of one operative 10 MW unit, one warm standby 10 MW unit, and one cold standby 
10 MW unit. The second configuration is a serial system of two operative 5 MW units, 
one warm standby 5 MW unit, and one cold standby 5 MW unit. The last configuration 
is a serial system of one operative 10 MW unit, two warm standby 10 MW units, and 
one cold standby 10 MW unit. 

Table 1. The size-proportional cost for the primary,  
warm standby and cold standby components 

Component Operative Warm standby Cold standby 
10 MW 5 MW 10 MW 5 MW 10 MW 5 MW 

Cost [$] 10×106 5×106 6×106 3×106 4×106 2×106 

Table 2. The costs for each configuration i (i = 1, 2, 3)  
Configuration 1 2 3 
Cost [$] 2×106 15×106 24×106 

Cost-benefit factor. We consider the size-proportional costs for the operative, 
warm standby and cold standby components given in Table 1. Thus we calculate the 
costs for each configuration  1, 2, 3i i  shown in Table 2. Let iC  denote the cost of 
the configuration i, and iB  be the benefit of the configuration i, where iB  is .iAv  
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3. Availability analysis of the configurations 

We use the following supplementary variable: U  remaining repair time for the 
component under repair. The state of the system at time t is given by N(t)  a number 
of working units in the system, and U(t). Let us define 

      , , , 0nP u t du P N t n u U t u du u       

   
0

,n nP t P u t du


   

3.1. Availability for configuration 1 

Relating the state of the system at time t and t dt , we obtain 
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2 2 21uf uf

d P t P t c P t
dt

        (6) 

where the unsafe failure state uf incurs a reboot delay with mean 1 .  
In steady-state, let us define 

  1 2lim , 3, 2, 1, 0, ,n nt
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and further, define 
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From (1)–(9), the steady-state equations are given by: 
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Now, from (10), (14) and (15), we obtain 



 M. EL-SHERBENY, Z. M. HUSSIEN 26

    2 30P P    (16) 

    
1 3

1
uf

c
P P

 


 
  (17) 

        
2 2 2

1 1
(0)uf

c c
P P P

   
 

   
   (18) 

We further define 
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Taking the LST on both sides of( 11)–(13) and using (16), we get 
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We develop a recursive method to get explicit expressions    0 2, 1, 0 .nP n   Set-
ting s     and 0s   in (16), yields 
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Again, setting s   in (19), it follows that 

  
      

 

* *
*

2 3*

B B
P P

B
    


  

  



 (24) 

Setting s   in (20) yields 
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Substituting (22)–(24) in (25), we have 
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Similarly, setting 0s  in (20), we obtain 

         * *
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From the above equation and (20), we have 
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   *
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Differentiating (21) with respect to s and setting s = 0 in the result, we obtain 

    (1)
0 10 0P P    (28) 

Differentiating (19) with respect to s and then setting s = 0 in the result yields 

          (1)
2 2 1 2 10 0 0 0P P b P P           (29) 

Similarly, differentiating (20) with respect to s and setting s = 0 in the result, we 
find that 
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Then, using (28), we have 
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where      2 2 10 , 0 , 0P P P and  0 0P are given in (23), (16), (22) and (26), respec-
tively. 

Now, using the normalizing condition 



Cost analysis of series systems  29

     
1 23 2 1 00 0 0 1uf ufP P P P P P         

From the above equation, we obtain 3.P  
We assume that one safe failure state 0 and two unsafe failure states 1uf and 2uf  are 

system down states. Then for availability model 1, the explicit expression for the 1Av  is 
given by 

     
1 21 0 3 2 11 0 0 0uf ufAv P P P P P P          

Using (20) and (24), we obtain the explicit expression for the 1Av  
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3.2. Availability for configuration 2 

Following the same procedures as given in the section that analyzes the availability 
of configuration 1 case, it is easy to set up the following steady-state equations: 
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1 40 1 2ufP c P        (37) 

    
2 30 1 2ufP c P        (38) 

Now, from (35), (39) and (40), we obtain 
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Taking the LST on both sides of (34)–(36) and using (39)–(41), it implies that 
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Setting 2s     and 0s  in (42) yields, respectively  
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Again, setting 2s   in (42), it follows that 
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Setting 2s   in (43) yields 
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Similarly, setting 0s  in (43), we obtain 
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From the above equation and (48), we have 
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Differentiating (44) with respect to s and setting s = 0 in the result, we obtain 
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    (1)
1 20 2 0P P    (51) 

Differentiating (42) with respect to s and then setting s = 0 in the result yields 

          (1)
3 3 1 3 22 0 0 0 0P P b P P           (52) 

Likewise, differentiating (43) with respect to s and setting s = 0 in the result, we 
find that 
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Then, using (51), we have 
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where      3 3 20 , 0 , 0P P P and  1 0P are given in (46), (39), (45) and (49), respectively. 
Now, using the normalizing condition 
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from the above equation, we obtain 4.P  
We assume that one safe failure state 1 and two unsafe failure states 1uf and 2uf  are 

system down states. Since states 1, 1uf , and 2uf  are system down states, then for the 
availability model 2, the explicit expression for the 1Av  is given by 

     
1 22 1 4 3 21 0 0 0uf ufAv P P P P P P          

Using (46) and (50), we obtain the explicit expression for the 2Av  
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3.3. Availability for configuration 3 

We use the same procedure as above to obtain the steady-state equations as follows 
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Now from (56), and (61)–(63) we obtain 

    3 40 2P P    (64) 



 M. EL-SHERBENY, Z. M. HUSSIEN 34

    
1 4

1 2
uf

c
P P

 


 
  (65) 

        
2 3 3

1 2 1 2
(0)uf

c c
P P P

   
 

   
   (66) 

        
3 2 2

1 1
(0)uf

c c
P P P

   
 

   
   (67) 

Taking the LST on both sides of (57)–(60) and using (64)–(67), it implies that 
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Setting 2s    and 0s  in (68), respectively, yields 
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Again, setting s     and s   in (68), it follows that  
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Setting s     in (69) yields 
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Similarly, setting 0s  in (69), we obtain 
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Again, setting s   in (69), it follows that  
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Setting s   in (70) yields 
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Likewise, setting 0s  in (70), we obtain 
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Differentiating (71) with respect to s and setting s = 0 in the result, we obtain 
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0 10 0P P    (81) 
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Differentiating (68) with respect to s and then setting s = 0 in the result yields 

          (1)
3 3 1 3 22 0 0 0 0P P b P P           (82) 

Differentiating (68) with respect to s and then setting s = 0 in the result, it follows 
that 
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Likewise, differentiating (70) with respect to s and setting s = 0 in the result, we 
find that 
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Then, using (81), we have 
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Now, using the normalizing condition 
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From the above equation we obtain 4.P  
We assume that one safe failure state 0 and three unsafe failure states 1unf , 2unf and 

3unf  are system down states. Since states 0, 1unf , 2unf ,  and 3unf  are system down states. 
Then for availability model 3, the explicit expression for the 3Av  is given by 
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Using above equations, we obtain the explicit expression for the 3Av  
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 4. Comparison of the three configurations 

The purpose of this section is to present specific comparisons for the  1, 2, 3iAv i   
for two different repair time distributions: exponential and k-stage Erlang, using an ef-
ficient Mathematica computer program. Basically, we consider the following values: 

1 1 1 1 102500 days,   4000 days,   10 days,    days 10 h
24   

      

4.1. Comparison of all availability models  

We first consider the following four cases to perform a comparison for the Av of the 
configurations 1, 2, 3 when the repair time distribution is exponential, or 2-stage Erlang, 
or 3-stage Erlang. 

Case 1. We fix 0.00025  , 0.1  , 2.4  , 0.9c   and vary the values of   
from 0.0004 to 0.01. 

Case 2. We fix 0.0004  , 0.00025  , 2.4  , 0.9c   and vary the values of  
from 0.01 to 0.18. 

Case 3. We fix 0.0004  , 0.00025  , 0.1  , 0.9c   and vary the values of  
from 1 to 10. 

Case 4. We fix 0.0004  , 0.00025  , 0.1  , 2.4   and vary the values of c 
from 0.5 to 1. 
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Numerical results of the  iAv M and  i kAv E for each availability model 
 1, 2,3i i  are shown in Tables 3–6 for cases 1–4, respectively. 

4.2. Comparison of all availability models based on their cost/benefit ratios  

We consider that the various configurations may have different costs when comparing 
all configurations. We assume that the size-proportional costs for the operative units, cold 
standby units and warm standby units are given in Table1. With this, we calculate the costs 
for each configuration  1, 2, 3i i   shown in Table 2. Let iC be the cost of the configura-
tion i, and iB  be the benefit of the configuration i, where iB  is the .iAv  Under the cost/ben-
efit ( / )i iC Av  ratio, comparisons are made based on assumed numerical values given to the 
system parameters, and to the costs of configurations. Numerical results of ( / )i iC Av for con-
figurations 1, 2, 3i   are shown in Tables 7–10 for cases 1–4, respectively.  

Table 3. Comparison of the availability models 1, 2, 3 for Av (case 1) 

Range of  Result 
1. Exponential repair time

0.0004 <       1 3 2Av M Av M Av M   

0.002 <       3 1 2Av M Av M Av M   
2. 2-stage Erlange repair time

0.0004 <       1 2 3 2 2 2Av E Av E Av E 

0.00257 <       3 2 1 2 2 2Av E Av E Av E   
3. 3-stage Erlange repair time

0.0004 <  < 0.00283      1 3 3 3 2 3Av E Av E Av E   

0.00283 <  < 0.01      3 3 1 3 2 3Av E Av E Av E   

Table 4. Comparison of the availability models 1, 2, 3 for Av (case 2) 

Range of  Result 
1. Exponential repair time

0.01 <       3 1 2Av M Av M Av M   

0.0246 <       1 3 2Av M Av M Av M   
2. 2-stage Erlange repair time

0.01 <       3 2 1 2 2 2Av E Av E Av E 

0.02 <       1 2 3 2 2 2Av E Av E Av E 

3. 3-stage Erlange repair time
0.01 <  < 0.0184      3 3 1 3 2 3Av E Av E Av E 

0.0184 <  < 0.2      1 3 3 3 2 3Av E Av E Av E 
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Table 5. Comparison of the availability models 1, 2, 3 for Av (case 3) 

Range of  Result 
1. Exponential repair time

1 <  < 10      1 3 2Av M Av M Av M   

2. 2-stage Erlange repair time
1 <  < 10      1 2 3 2 2 2Av E Av E Av E 

3. 3-stage Erlange repair time
1 <  < 10      1 3 3 3 2 3Av E Av E Av E   

Table 6. Comparison of the availability models 1, 2, 3 for Av (case 4) 

Range of C Result 
1. Exponential repair time

0.5 0.9935C        1 3 2Av M Av M Av M   

0.9935 1C        1 3 2Av M Av M Av M   

2. 2-stage Erlange repair time
0.5 0.9953C        1 2 3 2 2 2Av E Av E Av E 

0.9953 0.99601C        1 2 3 2 2 2Av E Av E Av E 

0.99601 0.99758C        1 2 3 2 2 2Av E Av E Av E 

0.99758 1C        1 2 3 2 2 2Av E Av E Av E 

3. 3-stage Erlange repair time
0.5 0.9951C        1 3 3 3 2 3Av E Av E Av E 

0.9951 0.99601C        1 3 3 3 2 3Av E Av E Av E 

0.99601 0.99732C        1 3 3 3 2 3Av E Av E Av E 

0.99732 1C        1 3 3 3 2 3Av E Av E Av E 

 
From the Tables (7–10), we can predict that the optimal system using cos it Av

value is system 2. It should be noted that the optimal configuration using the cos it Av
value does not depend on distributions of repair time and the ranges of , , , and c. 

Table 7. Rank of (Ci/Avi) for  = 0.00025,  = 0.1,  = 2.4, v = 0.9  

 

Repair time distribution Range of  Rank  i iC Av  

1. Exponential repair time 

0.0004 0.01   

     3 1 23 1 2C Av M C Av M C Av M   

2. 2-stage Erlange repair time      3 2 1 2 2 23 1 2C Av E C Av E C Av E   

3. 3-stage Erlange repair time      3 3 1 3 2 33 1 2C Av E C Av E C Av E   
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Table 8. Rank of (Ci/Avi) for  = 0.0004,  = 0.00025,  = 0.1,  = 2.4, v = 0.9  

Repair time distribution Range of  Rank  i iC Av  

1. Exponential repair time 

0.01 <  < 0.2 

     3 3 1 1 2 2C Av M C Av M C Av M   

2. 2-stage Erlange repair time      3 3 2 1 1 2 2 2 2C Av E C Av E C Av E   

3. 3-stage Erlange repair time      3 3 3 1 1 3 2 2 3C Av E C Av E C Av E   

Table 9. Rank of (Ci/Avi) for  = 0.0004,  = 0.00025,  = 0.1, c = 0.9 

Repair time distribution Range of  Rank  i iC Av  

1. Exponential repair time 

1 <  < 10 

     3 3 1 1 2 2C Av M C Av M C Av M   

2. 2-stage Erlange repair time      3 3 2 1 1 2 2 2 2C Av E C Av E C Av E   

3. 3-stage Erlange repair time      3 3 3 1 1 3 2 2 3C Av E C Av E C Av E   

Table 10. Table 9. Rank of (Ci/Avi) for  = 0.0004,  = 0.00025,  = 0.1,  = 2.4 

Repair time distribution Range of c Rank  i iC Av  

1. Exponential repair time 

0.5 1c   

     3 3 1 1 2 2C Av M C Av M C Av M   

2. 2-stage Erlange repair time      3 3 2 1 1 2 2 2 2C Av E C Av E C Av E   

3. 3-stage Erlange repair time      3 3 3 1 1 3 2 2 3C Av E C Av E C Av E   

5. Conclusions 

The authors develop analytic steady-state results for availability systems with mixed 
standby components and imperfect coverage. However, the first objective of this article 
was to provide a recursive method, using the supplementary variable technique, to de-
rive the steady-state availability for three systems. The second objective was to verify 
the explicit expressions for two different repair time distributions such as exponential 
distribution (M), and k-stage Erlang (Ek). Finally, we provided the cost/benefit analysis 
of three availability models, and rank three availability models for two different repair 
time distributions. We conclude that the optimal system using value is system 2. 
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