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THE VALUATION OF REAL OPTIONS 
 IN A HYBRID ENVIRONMENT 

The aim of this paper is to present the possibilities and purposefulness of the application of fuzzy 
set theory to the valuation of real options. Owing to temporal fluctuations in the market, some input 
parameters in a model of a real option cannot always be expressed in a precise sense. Therefore, it is 
natural to consider them as a fuzzy numbers. Such an approach allows us to keep more information 
about the possible value of real options. A hybrid (fuzzy-stochastic) model for valuing a switch option 
is presented. Under these assumptions, the value of a switch option will be a fuzzy random set. This 
article assesses the incremental benefit of product switch options in steel plant projects. Such options 
are valued by Monte Carlo simulation and modelling the prices of and demand for steel products using 
fuzzy geometric Brownian motion. Finally, the value of a product switch option is defined by the upper 
and lower probability distribution function 
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1. Introduction 

Methods of valuing real options take into account the presence of a high level of 
uncertainty and managerial flexibility in the process of investment decisions. The ap-
proach of real options, as a strategic decision making tool, borrows ideas from financial 
options, because it explicitly accounts for the value of future flexibility. The analysis of 
real options is based on the assumption that there is an underlying source of uncertainty, 
such as the price of a commodity or the outcome of an investment project. Over time, 
the outcome of the underlying uncertainty is revealed, and managers can adjust their 
strategy accordingly.  
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It is apparent that financial parameters (cash flow, profit, etc.) are affected by the 
precision of input data. The valuation procedure is usually carried out under the assump-
tion of a deterministic or stochastic environment, but uncertainty (vagueness) is most 
commonly neglected [36].  

Here one might quote Wu regarding the interest rate [27]. He states: When the fi-
nancial analyst tries to price an European option, the interest rate is sometimes as-
sumed as a constant. However, the interest rate may have different values in the differ-
ent commercial banks and financial institutions although the difference is so small. 
Therefore, the choice of a reasonable interest rate to price a European option may cause 
a dilemma. But one thing that can be sure is that the different interest rates may be 
around a fixed value within a short period of time. For instance, the interest rates may 
be around 5% in the different commercial banks and financial institutions. The phrase 
around 5% might have a problem to be modelled by using the probability theory. There-
fore, the fuzzy sets theory plays an appropriate role to tackle this kind of fuzziness. In 
this case, the interest rate may be regarded as a fuzzy number 5% when the financial 
analyst tries to price an European call option using the Black–Scholes formula. It can 
be seen here that an appropriate description of reality in the pricing of options requires 
the use of fuzzy sets. 

In models for valuing real options, the uncertainty of selected variables (market size, 
product prices) is usually modelled with the help of the Black–Scholes (B–S) formula 
[15, 18, 27, 28]. A fluctuating market and lack of detailed information mean that many 
parameters used to value a real option cannot always be described in a precise sense. 
For example, the volatility, a crucial parameter in the standard formula for valuing an 
option, is too abstract (and unstable) to be set correctly [31]. Very often, the imprecision 
we encounter when estimating future cash flows is not solely stochastic in nature. There-
fore, most models for valuing real options involve uncertainty arising from a lack of 
knowledge or from inherent vagueness, apart from random uncertainty. The use of prob-
ability theory alone in such cases gives us a misleading level of precision and a notion 
that consequences are somehow replicable [7]. As Zadeh stated, it is difficult to measure 
impreciseness using the concept of probability, because probability is used to measure 
randomness. Randomness is relevant to the occurrence or non-occurrence of an event, 
while fuzziness is relevant to the degree of an event [4, 32].  

Very often an analyst estimates parameters based on historical data and then cor-
rects their value by subjectively predicting a change in the future economic environment 
[17, 18]. For example, the authors of the study [17] state: A historical series analysis of 
the steel product prices (from January 2000 to April 2009) shows an average growth 
rate of 4.67% per year. Nevertheless, we use 2.5% as drift for steel product prices as it 
is assumed that a structural change has occurred in the sector after the end of the eco-
nomic crisis which occurred in 2008/2009. Therefore, we assume that for the projected 



The valuation of real options in a hybrid environment 99

five years during which the cash flows will be calculated, a growth rate in price lower 
than that experienced during 2000–2009. 

In many sectors of the economy (e.g., engineering industry, mining industry, oil indus-
try and metallurgical industry) we have a specific context for applying methods for valuing 
real options using fuzzy numbers. Investments in such industries normally have a duration 
of 10–12 years. It should be clear that the relevance of historic data diminishes very quickly 
after 2–3 years and that it is not worthwhile to claim that time series have any predictive 
value 5 years into the future [7]. Therefore, expert evaluations are necessary. 

Demand for different products is very often interactive and dependent; that is, cor-
relations between the market demands for different products are observable and meas-
urable. Because the demand for any product is generally affected by demand for other 
products within the same product line, the demand for a single product cannot be deter-
mined individually in isolation [12]. Likewise, relationships between the prices of se-
lected product lines can also be observed. 

In models for valuing real options, these dependencies are usually not taken into 
account [17, 26, 33, 35]. Separate forecasting and estimation would likely increase the 
inaccuracy [12]. Such biased forecasts inevitably impact the precision of valuations of 
real options. A few models that include such correlations between parameters based on 
a probabilistic description of B–S models can be found [12, 18]. However, these meth-
ods fail to accurately capture or manage the components of random and fuzzy uncer-
tainty in these parameters. 

In conclusion, one can say that there exist many cases of valuations of real options 
where both types of uncertainty are present [4, 18]. An analyst usually depends on an 
expert’s judgment to derive the level of uncertainty regarding correlated parameters in 
models of real options. Thus, an investor is forced to use both random and fuzzy ele-
ments as a basis to assess uncertainty. Experts’ opinions or imprecise estimates should 
be introduced into the model in the form of fuzzy numbers. 

This article proposes a new method of valuing real options which is better adapted 
to the real conditions of decision making. As stated above, an investor usually faces the 
problem of implicit fuzziness. Therefore, it is difficult to use the traditional probabilistic 
B–S model to define uncertainty in many practical problems involving the assessment 
of investment projects. Taking the above into consideration, this article presents a method 
which uses fuzzy numbers in the assessment of real options and interpretation of the 
results obtained. The B–S model is applied here with fuzzy parameters. Furthermore, 
a method is developed for taking into account the correlation between parameters of  
B–S models when the uncertainty of these parameters is described using probability 
theory and the theory of fuzzy numbers. In order to model the relationship between 
fuzzy parameters, it is proposed to use interval regression. The proposed method eval-
uates investment projects in a more realistic way. Since this method takes into consid-
eration imprecision/vagueness and randomness (a hybrid environment), it is able to give 
investors a better understanding of a problem when analysing investment decisions. 
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This concept was verified on the basis of a switch option. A switch option refers to 
changes in the raw materials used, products manufactured and other production factors, 
or even an entire technological process. Such switches have the goal of adapting to 
changes in the market situation.  

2. Related works 

Fuzzy numbers are used in the valuation of financial options and real options. The 
literature on the use of fuzzy numbers to value financial options is more developed. 
Many works use the B–S model with fuzzy parameters for pricing financial options. 
Guerra et al. [10] consider the B–S model for option pricing, and present a sensitivity 
analysis based on a study of the option price when the parameters are assumed to be 
fuzzy numbers. Zdenek [33] proposed a generalized hybrid fuzzy-stochastic binomial 
model of an American real option using fuzzy numbers and a decomposition principle 
where the input data are in the form of fuzzy numbers. Zmeskal [36] applied B–S meth-
odology for appraising the equity of a European call option by using input data in the 
form of fuzzy numbers. Appadoo and Thavaneswaran [2] derived the membership function 
of the price of a European call based on the B–S model with fuzzy volatility. They fuzzified 
the maturity value of the stock price using adaptive fuzzy numbers. The B–S model in 
a fuzzy environment was analysed by Wu [28] and further adapted in [27]. An application 
of the extension principle in fuzzy set theory to the B–S formula was proposed in that 
paper. The authors considered a fuzzy interest rate, fuzzy volatility and fuzzy stock price 
in a financial market. Under these assumptions, the prices of European call and put op-
tions will be fuzzy numbers, and the extension principle is invoked to generate the pric-
ing boundaries of European call and put options [27, 28]. Lee et al. [15] adopted fuzzy 
decision theory and Bayes’ rule as a basis for measuring fuzziness in the practice of 
analysing options. Their study also employed a fuzzy decision space consisting of four 
dimensions, i.e., a fuzzy state; fuzzy sample information, fuzzy action and evaluation 
function to describe an investment decision, which is used to derive a model for fuzzy 
B–S option pricing in an uncertain environment.  

Another authors used a jump diffusion model with fuzzy parameters. Zhang et al. [35] 
derived a fuzzy pricing formula for a European option based on Kou’s diffusion model for 
a double exponential jump. They also proposed a formula for crisp possibilistic pricing of 
a mean option by using the possibilistic mean value of a fuzzy number. Weidong et al. [26] 
discuss analytical solutions for a European option using a fuzzy normal model of jump-
diffusion and possibility theory. Under the assumption that the risk-free rate, the volatility, 
and the average jump intensity are fuzzy numbers, Xu et al. [29] present a jump-diffusion 
approach to pricing options in fuzzy environments. They also provide a model of crisp pos-
sibilistic mean jump-diffusion to price vulnerable European call options. 
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The literature also discusses applications of fuzzy set theory to variability models. 
This problem was investigated by Thavaneswaran et al. [23] and Thiagarajah et al. [24]. 
The purpose of this research is to introduce a class of models of coefficient volatility 
based on fuzzy theory and probability theory. Fuzzy option values and the superiority 
of fuzzy forecasts over minimum mean-square forecasts are discussed in some detail. 
Furthermore, the authors use fuzzy set theory to price binary options. Specifically, they 
study binary options by fuzzifying the maturity value of the stock price using trapezoi-
dal, parabolic and adaptive fuzzy numbers.  

Several papers describe the possibility of using fuzzy numbers to value real options. 
Carlsson and Fuller [7] and Carlsson et al. [8] use possibility theory to study fuzzy val-
uations of real options. The authors define the present values of expected cash flows 
and expected costs of investment by trapezoidal fuzzy numbers. Carlsson and Fuller [7] 
determined the optimal exercise time with the aid of the possibilistic mean value and 
variance of fuzzy numbers. Carlsson et al. [8] also developed a methodology for valuing 
options on R&D projects. In particular, they presented a fuzzy mixed integer program-
ming model for the problem of optimal R&D portfolio selection. The authors point out 
that in R&D and large infrastructure projects fuzzy numbers are an appropriate way to 
express uncertainty. Garcia [9] used a model for the fuzzy valuation of real options in 
a real investment project from the energy sector. In Garcia’s paper, the model suggested 
by Carlsson and Fuller [7] was applied to a timing decision and selection of a power 
station for various investment alternatives. Similarly, Zeng et al. [34] analysed the un-
certainty involved when investing in the power grid and discussed how to make an in-
vestment decision when the cost of an investment and cash flow are both fuzzy numbers. 
Furthermore, they compared the application of the classical method of net present value 
with real options for evaluating investments. In the above works, the authors assume 
that the present values of expected cash flows and expected costs of investment are 
fuzzy values. However, they do not indicate how to designate them. 

Another idea for analysing real options using fuzzy numbers was proposed by 
Kahraman and Ucal [14]. They used the approach of certainty equivalence to value real 
options in the oil sector with fuzzified data. 

Allenotor and Thulasiram [1] used a fuzzy trinomial model of real options for pric-
ing grid resources and proved the feasibility of the model through experiments. An im-
portant topic of this research is the modeling of uncertainty in the area of quality of 
service using fuzzy logic. Tao et al. [22] developed a comprehensive methodology 
based on fuzzy risk analysis and the approach of real options to evaluate investments in 
information technologies in a nuclear power station. By linking the variability of ex-
pected payoffs to specific sources of risk factors, this method could help decision mak-
ers to achieve more reliable valuations of investments affected by multiple sources of 
risk. Shiu and Shu [21] propose a fuzzy binomial model of options pricing for valuing 
an investment project in uncertain environments. The proposed approach reveals the 
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value of the flexibility embedded within a project and defines a method to compute the 
mean value of a project’s fuzzy expanded NPV that represents the entire value of project.  

It should be noted, however, that none of these studies deal with the problem of 
a hybrid environment (a fuzzy-stochastic environment) for pricing real options. As 
stated above, decision-makers often have to take both types of uncertainty into account 
in the investment process. Furthermore, in the case of a hybrid environment, there exists 
the problem of correlating the variables described by B–S models. The prices of indi-
vidual assortments of products and raw materials are strongly correlated. Similarly, the 
sales volume of particular ranges of product manufactured by an enterprise are usually 
correlated.  

3. Model and methodology 

This section introduces the model and methodology for valuating the option of 
a product switch in a hybrid environment. Firstly, the modelling of uncertainty using 
correlated fuzzy geometric Brownian motion (GBM) is described. Next, a model for 
estimating the value of a product switch option in a hybrid environment is presented. 

3.1. Modelling uncertainty  
by correlated fuzzy geometric Brownian motion (GBM)  

GBM is a special case of Brownian motion or a Wiener process. The variable q 
follows GBM if it satisfies the following diffusion equation [3, 16, 17, 25]: 

 dqt = qt dt + qt dwt (1) 

where t tdw dt  is the standard increment of a Wiener process, and  and  are the 
drift parameter and standard deviation parameter, respectively. The deviations, t, are 
independent realizations from the standard normal distribution. 

Let Δ be the interval of time between two successive observations. Based on Eq. (1), 
we obtain the following formula for predicting qt  [3, 16, 17, 25]:  

 
2

1 exp
2t t tq q     

  
    

   
 (2) 

Very often the statistical data available are not sufficient or appropriate for estimat-
ing  and . In this case, they are estimated by experts or, as stated above, these param-
eters are first estimated on the basis of these statistical data and next corrected by an 



The valuation of real options in a hybrid environment 103

expert. In this case,  and  are imprecise quantities and can be described by fuzzy 
numbers. Thus, if the statistical data available are not sufficient to define a stochastic 
process, one has to define a fuzzy-stochastic process. In such a process, qt will be de-
scribed by a fuzzy random variable. The appearance of a fuzzy random variable makes 
the combination of randomness and fuzziness more persuasive, since probability theory 
can be used to model randomness, and the theory of fuzzy sets can be used to model 
imprecision. This gives us a more realistic description of the actual decision-making 
environment. 

Taking into account uncertainty about the values of  and , Eq. (2) can be written 
as follows: 

 
2

1 exp
2t t tq q     

     
  

    (3) 

where ,    are fuzzy numbers characterizing  and , respectively.  
It should be taken into account that the prices of many products and of raw materi-

als, as well as the market volume of selected products, can be modelled in this way. The 
prices of various products and raw materials are usually correlated. The volume of the 
markets for individual products is also correlated. To incorporate these correlations into 
the model, let us suppose that we are analysing I primary variables, which will be pre-
dicted by Eq. (3). Additionally, it is assumed that subsets MK of correlated variables,  
M K = {i, i  K }, K  Ks, may be defined. Here, K is the subset of indices of the 
correlated variables, and Ks is the set of indices of the selected subsets of corelated var-
iables.. From the above, when the upcoming period is t, Eq. (3) can be expressed as the 
following forecasting model for the primary variables i. 

 
2

, 1 exp
2

i
it i t it iiq q     

     
  

 (4) 

Here, it is assumed that i and i, i = 1, 2, ..., I are fuzzy variables, the values of 
which are limited by the respective fuzzy numbers , ,i i    i = 1, 2, ..., I. To take into 
consideration the correlation betweenthe imprecisely known variables, the set of inde-
pendent variables it; i = 1, 2, ..., I should be replaced by the set of correlated variables 
ηit; i = 1, 2, ..., I . Correlated values ηit can be derived on the basis of the values it. For 
this purpose, one can use the method of Cholesky decomposition of the correlation ma-
trix described in the [30]. These matrixes should be developed for the primary variables 
i  K, separately for each set KKs.  
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When performing operations on fuzzy numbers, we often use the -levels of these 
numbers. When using -level notation, the constraints on the fuzzy variables i and i 
can be defined as follows: 

    inf sup( )  for ,  0,1i i i i I
          (5) 

     inf sup( )  for ,  0,1i i i i I
          (6) 

where: ( )i   – -level of the fuzzy number ,i  i 
 – -level of the fuzzy number .i  

The correlation between i for different products can be modelled by interval re-
gression [11]. Equations that define the correlation relationships between these varia-
bles, described using -level notation, are presented below:  

      1 2inf inf  for ,  ,  iz iz
i z sa a i K z K K K        (7) 

    1 2sup sup  for ,  ,  iz iz
i z sa a i K z K K K         (8) 

where: 1 2,iz iza a  – the coefficients of the interval regression equations determining the 
dependencies between the variables and .i z     

The coefficients 1 2,iz iza a  may be determined using the method proposed by Hladik 
and Černy (the crisp input–crisp output variant) [11].  

Equation (4) and Ineq. (5)–(8) can be used in simulations to estimate the static NPV. 
When estimating the value of a product switch option, a Monte Carlo simulation must 
be carried out under the assumption that the uncertain variables involved follow a risk- 
-neutral GBM.  

In this case, the following equation should be used instead of Eq. (4) [3, 5]: 

 
2

1 exp
2
i

it i t it ii i
q q      

      
  

 (9) 

Estimation of the risk-premium () is usually done as described by Hull [13] and 
has been used in several works, such as Blank et al. [5]. At the same time, it is commonly 
known that risk premia are very hard to estimate with precision. Therefore, they should 
often be presented in the form of fuzzy variables. In this case, the constraints on the 
fuzzy variables i can be defined as follows: 

    inf sup( )  for ,  0, 1i i i i I
           (10) 

where: ( )i   – -level of the fuzzy number .i  
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3.2. Model for estimating the value of a product switch option 
in a hybrid environment 

In this section, the model used for valuating product switch options in a hybrid en-
vironment is defined. This model is an extension of the model presented in [18]. It takes 
into account the occurrence of fuzzy parameters in a model of GBM. Using this model 
and Monte Carlo simulation, a product switch option is valued in a hypothetical produc-
tion setup (see Fig. 1).  

 
Fig. 1. Description of the analyzed production setup 

In this case, the effectiveness of the project – the construction of a new organic- 
-coated sheet (OC sheet) plant – is analyzed. This plant can produce OC sheet – a prod-
uct made from hot-dip galvanised sheets (HDG sheet) with greater added value and 
several uses. For the analyzed production setup, cold–rolled sheets (CR sheets) are the 
basic raw material. CR sheets are converted into HDG sheets. HDG sheets are partly 
sold and partly converted into OC sheets. The latter are all sold. Steel scrap is a waste 
product in the production of HDG sheets and OC sheets and is sold. 

Firstly, the basic case is analyzed. It consists of a standard valuation of a cash flow 
from which a static NPV (Eq. 11) for the projected construction of a new OC sheet plant 
is obtained. The annual cash flows obtained by investing in the OC plant, used to cal-
culate the static NPV, can be estimated from Eqs. (12)–(32): 

 
 
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T
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 



  (11) 

HDG sheet plant
(production capacity             
400 thousand tonnes)

Investment project
construction of  
OC sheet plant 

(production capacity                  
200 thousand tonnes)

Cold rolled 
sheet 

raw materials

sale of hot-dip galvanasing sheet sale of sheet organic coating 

raw materials

sale of scrap sale of scrap



 B. RĘBIASZ 106

 
 
 

 

–  for  0,  1,  , –  1
t t t

t t

ICF ZNo DAh DAo ZKOo

ZNh DAh ZKOh t T

   

   
  

(12)
 

 
 
 

 

 for  
t t t

t

t

t t

RICF ZNo DAh DAo ZKOo

ZNh DAh ZKOh

o

t T

V

RVh



 

   

  
 

(13)
 

 ZNot = SPot – Kot – max(SPot – Kot, 0)Ta for t = 0, 1, …, T (14) 

 ZNht = SPot – Kht – max(SPht – Kht, 0)Ta for t = 0, 1, …, T (15) 

 SPot = SRot × Sot + SRh(2)t × Sht for t = 0, 1, …, T (16) 

 SPht = SRh(1)t × Sht for t = 0, 1, …, T (17) 

 SRot = min(SFot; CAPo) for t = 0, 1, …, T (18) 

 SRh(1)t = min(SFht; CAPh) for t = 0, 1, …, T (19) 

 SRh(2)t = min (SFh(1)t; (CAPh – Mo × SRot)) for t = 0, 1, …, T (20) 

 SFht = ACht × MSh for t = 0, 1, …, T  (21) 

 SFot = ACot × MSo for t = 0, 1, …, T  (22) 

 Kot = SRot × Cc(2)t – SRh(2)t × Cc(1)t – OPCh × SRh(2)t   

 – SRot × OPCo – DAh –DAo – GAh – GAo for t = 1, 2, …, T (23) 

 Kht = SRh(1)t × Cc(1)t – OPCh × SRh(1)t – DAh – GAh for t = 0, 1, …, T (24) 

 Cc(1)t = Mc × Sct – (Mc – 1) × Szt for t = 0, 1, …, T (25) 

 Cc(2)t = Mc × Mh × Sct – (Mc × Mh –1) × Szt for t = 0, 1, …, T (26) 

 ZKOot = KOot – KOot–1 for t = 0, 1, …, T (27) 

 ZKOht = KOht – KOht–1 for t = 0, 1, …, T (28) 
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for  0,  1,  ,

t t t t t
t

t t t

SPo SPo Ko DAo DAhKOo
Sq Cna Cz

tKo DAo
Czb

TDAh


 
  







  

(29)

 

 
Czb

DAhKh
Cz

DAhKh
Cna
SPh

Sq
SPhKOh tttt

t





  for t = 0, 1, …, T (30) 

 

f

0.

or   

7 0.7 t t tt t
t

t t t

Ko DAo DAhSPo SPoRVo
Sq Cna Cz

Ko DAo DAh
Cz

t T
b

 
 


 




  

 (31)

 

 0.7 0.7 t tt t t t
T

Kh DAhSPh SPh Kh DAhRVh
Sq Cna Cz Czb

 
     for t = T  (32) 

The prices of HDG sheet, OC sheet, CR sheet, steel scrap and apparent consumption 
of HDG sheet and OC sheet are defined on the basis of Eq. (4). In the simulation process 
determining the NPV, additionally Eqs. (5) and (6) are taken into account for all the 
prices and apparent consumption of goods. The correlation between the prices of the 
listed products and raw materials and the correlations between the apparent consump-
tion of HDG sheet and of OC sheet are defined on the basis of Eqs. (7) and (8). 

The following notation was used in these equations: 
ICFt – cash flow in year t for the project – construction of a new OC sheet plant, 
rris – weighted average cost of capital, 
I – capital expenditure on the project, 
ZNot – net profit in year t in the scenario where the project is implemented, 
ZNht – net profit in year t in the scenario where the project is not implemented, 
SPot – revenue in year t in the scenario where the project is implemented, 
SPht – revenue in year t in the scenario where the project is not implemented, 
Kot – total cost in year t in the scenario where the project is implemented, 
Kht – total cost in year t in the scenario where the project is not implemented, 
CAPh – installed capacity of the HDG sheet plant, 
CAPo – installed capacity of the OC sheet plant, 
SFht – sales forecast for HDG sheets in year t, 
SFot – sales forecast for OC sheets in year t, 
MSh – market share for HDG sheets, 
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MSo – market share for OC sheets, 
ACht – forecasted apparent consumption of HDG sheets in year t, 
ACot – forecasted apparent consumption of OC sheets in year t, 
SRot – sale of OC sheets realized in year t in the scenario where the project is 
  implemented, 
SRh(1)t – sale of HDG sheets realized in year t in the scenario where the project is not 
  implemented, 
SRh(2)t – sale of HDG sheets realized in year t in the scenario where the project is  
  implemented, 
Sht – price of HDG sheet per ton in year t, 
Sot – price of OC sheet per ton in year t, 
Sct – price of CR sheet per ton in year t, 
Szt – price of steel scrap per ton in year t, 
Cc(1)t – cost of CR sheet per ton of HDG sheet in year t, 
Cc(2)t – cost of CR sheet per ton of OC sheet in year t, 
Mc – per unit consumption of CR sheet when producing HDG sheet, 
Mh – per unit consumption of HDG sheet when producing OC sheet, 
OPCh – other (with the exception of the cost of CR sheet) annual variable production 
  costs per ton for HDG sheet, 
OPCo – other (with the exception of the cost of CR sheet) annual variable production 
  costs per ton for OC sheet, 
GAh – annual fixed costs for HDG plant, 
GAo – incremental annual fixed costs for OC plant, 
DAh – annual amortization for HDG plant, 
DAo – annual amortization for OC plant, 
KOot – net working capital in year t in the scenario where the project is implemented, 
KOht – net working capital in year t in the scenario where the project is not implemented, 
ZKOot – change in net working capital in year t in the scenario where the project is  
  implemented, 
ZKOht – change in net working capital in year t in the scenario where the project is not 
  implemented, 
RVot – residual value in year t in the scenario where the project is implemented, 
RVht – residual value in year t in the scenario where the project is not implemented, 
Sq – cash in hand turnover, 
Cz – inventory turnover, 
Czb – debtor turnover, 
Cna – receivables turnover, 
T – economic life-cycle of project, 
Ta – tax. 
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Equations (12) and (13) are used to compute the cash flow for the project – con-
struction of a new OC sheet plant – in successive years of the project’s life-cycle. Equa-
tion (12) concerns the years 0, 1, ..., T – 1, whereas Eq. (13) concerns the last year T. 
Cash flow is computed according to an incremental relationship, i.e., the cash flow 
which would arise without taking into account the investment is subtracted from the 
cash flow which takes into account the construction of a new OC sheet plant. 

Equations (14) and (15) show how to compute the net profit in the scenario where 
the project is implemented and in the scenario where the project is not implemented, 
respectively. The key problem in computing these profits is determining the revenue 
and total costs resulting from the analysed scenarios. 

The revenue is computed using Eqs. (16)–(22). The revenue in the scenario where 
the project is implemented is computed using Eq. (16). Equations (18), (20) and (22) 
enable computing the level of sales in this case. The revenue in the scenario where the 
project is not implemented is computed using Eq. (17). Equations (19) and (21) are used 
to compute the level of sales in this case. 

When computing the static NPV, the amount of OC sheets sold (in the scenario 
where the project is implemented (SRot)) is determined as the minimum of the following 
two values: 

 the product of the forecasted apparent consumption of OC sheets and market 
share, 

 the available capacity for producing OC sheets.  
The amount of HDG sheets sold in this scenario (SRh(2)t) is determined as the min-

imum of the following two quantities: 
 the product of the forecasted apparent consumption of HDG sheets and market 

share, 
 the available capacity for producing HDG sheets minus the amount of HDG sheets 

used to produce OC sheets. 
In this case, the greatest possible sales of OC sheets are realized according to both 

production capacity and market conditions. The sales of HDG sheets stem from the 
market conditions, production capacities and the amount of HDG used to produce OC 
sheets. On the other hand, the level of sales of HDG sheets in the scenario where the 
project is not implemented (SRh(1)t) is determined as the minimum of the two following 
quantities: 

 the product of the forecasted apparent consumption of HDG sheets and market 
share, 

 the available capacity for producing HDG sheets. 
The remaining quantities required to calculate the NPV are computed on the basis 

of the revenue resulting from these sales. 
Equations (23) and (24) are used to compute the total costs, and Eqs. (25) and (26) 

to compute the cost of materials, for both of the scenarios analysed. 
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Equations (27)–(30) enable assessment of the change in the level of working capital 
in each year of the analysed scenarios. The level of working capital is computed as 
a function of the levels of cash in hand turnover, inventory turnover, debtor turnover 
and receivables turnover. 

Equations (31) and (32) are used to compute the residual value for the analysed 
scenarios. The residual value is computed according to the Wilcox formula, which states 
that the residual value is equal to [18]:  

 100% of the value of means of payment,  
 70% of the book value of supplies, 
 70% of the book value of debts,  
 –100% of the value of liabilities. 
The static NPV is calculated N times for each -level of i and i  using Monte Carlo 

simulation according to Eq. (11). The uncertainty of demand for HDG sheets, OC sheets 
and the uncertainty of prices for CR sheets, HDG sheets, OC sheets and scrap are taken into 
consideration. Such a calculation takes into account the correlations between the prices of 
the following products: steel scrap, CR sheets, HDG sheets and OC sheets. The correlation 
between the apparent consumption of HDG sheets and OC sheets is also taken into account 
in the calculation procedure. The result gives an estimate of the upper and lower probability 
distribution function of the static NPV. Formally, the algorithm can be written as follows: 

START 
Step 1. Define 0, , J 
Step 2. Set j=1 
Step 3. Randomly generate a vector 1 2[ , ,..., ]t t It   , t = 1, 2, ..., T. Take into account the 
correlation between variables  
Step 4. Set = 0 
Step 5. Define -levels    ,i i   for the prices of the analysed products and raw ma-
terials and apparent consumption of HDG sheet and OC sheet 
Step 6. Define (sup) and (inf) for -levels of the fuzzy number defining the NPV. Find  

 , max,j i iNPV      

  , min,i ijNPV     

 where the problem constraints are specified by Ineq. (5)–(8) and (12)−(32) 
Step 7. Set  =  +  
Step 8. If 1   go to Step 5 
Step 9. Set j = j + 1 
Step 10. If Jj   go to Step 3 
Step 11. Define the set of fuzzy numbers 1( , ..., )NPV NPV

J   
STOP 
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In this case the NPV
j  for j = 1, 2, ..., J are determined by the intervals 

,,[ , ]jjNPV NPV  , for , , 2 , ..., 1.o o o       By this means, we obtain a random 

fuzzy set defining the static NPV of the project. Based on this set, upper and lower cu-
mulative distribution functions, together with the average value of the static NPV, is 
estimated. This uses a method defined in [19]. 

Next, the switch option is valued. The analysis of the static NPV of the project does 
not take into account the managerial flexibility of being able to switch the output prod-
uct. In some periods, the production of HDG sheet may be a more interesting and prof-
itable alternative to the company than the production of OC sheet. Therefore, in such 
cases the switch option is realized. The largest possible sales of HDG sheets are realized 
according to the available production capacities and market conditions. The sales of OC 
sheets stem from market conditions, production capacities and the availability of raw 
materials, i.e., HDG sheets. When the product switch option is realized, the level of 
sales of OC sheets (SRo(3)t) is determined as the minimum of the following quantities:  

 the product of the forecasted apparent consumption of OC sheet and market share,  
 available capacity for producing OC sheets,  
 the raw materials available, in the form of HDG sheets.  
The sales of HDG sheets in this case are determined as the minimum of the follow-

ing quantities:  
 the product of the forecasted apparent consumption of HDG sheets and market 

share,  
 capacity for producing HDG sheets, i.e., it is assumed to equal SRh(1)t. 
The values of product switch options can be obtained by simulating the incremental 

cash flows defined for the level of sales of OC sheets and HDG sheets discussed above 
in relation to the cash flow defined according to the conditions assumed in the calcula-
tion of the static NPV. The following equations are used to compute the value of the 
switch option: 

 
 

*

1 1

T
t

t
t f

ICFOPT
r




  (33) 

where OPT – the value of the switch option, rf  − risk free rate, *
tICF − incremental cash 

flow related to the product switch option in year t, 

 
   

  

* max 1 1

– ; 0 for 1, 2, , 1

t t t

t t

ICF ZNo DAo DAh ZKOo

ZNo DAo DAh ZKOo t T

   

     
 

(34)
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      

   

* max 1 1 1

– 1 ; 0 for 

t t t t

t t t

ICF ZNo DAo DAh ZKOo RVo

ZNo DAo DAh ZKOo RVo t T

    

   
 

(35)
 

The values of ZNo(1)t, ZKOo(1)t, RVo(1)t correspond to the net profit, change in 
working capital and residual value after realizing the product switch option, respec-
tively. They are computed on the basis of the values of SPot, and Kot, which are given 
by the following formulas: 

 SPot = SRo(3)t × Sot + SRh (1)t × Sht (36) 

 
         

 

3 2 – 1 1 – 1

– 3 – – – –

t t t t t t

t

Ko SRo Cc SRh Cc OPCh SRh

SRo OPCo DAh DAo GAh Gao

   


  

(37)
 

 (1)(3) min ; ; t
t t

SRhSRo SFo CAPo CAPh
Mh

    
 (38) 

The remaining parameters necessary to calculate the ICFt
* are defined according to 

the equations shown above for the calculation of the static NPV.  
Formally, the algorithm can be written as follows: 

START 
Step1. Define 0, , J 
Step 2. Set  j = 1 
Step3. Randomly generate a vector 1 2[ , ,..., ]t t It   , t = 1, 2, ..., T. Take into account the 
correlation between variables  
Step 4. Set = 0 
Step 5. Define -levels    αα ii  ,  for the prices of analysed products and raw mate-
rials and apparent consumption of HDG sheet and OC sheet 
Step 6. Define (sup) and (inf) for -levels of the fuzzy number defining the NPV. Find  

 , max,j i iOPT     

  , min,j i iOPT      
where the problem constraints are specified by Ineq. (5)–(9) and (12)−(15), (17)–(22), 
(24)–(32), (34)–(38)  
Step 7. Set  =  +  
Step 8. If   1 go to Step 5 
Step 9 Set  j = j +1 
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Step 10. If j  J go to Step 3 
Step 11. Define the set of fuzzy numbers 1( , ..., )NPV NPV

J   
STOP 

 
In this case the OPT

j for j = 1, 2, ..., J are determined by the intervals [ jOPT   
]jOPT   for , , 2 , ..., 1.o o o       In this way, we obtain a random fuzzy set defin-

ing the OPT of the project. 
Nevertheless, both the simulations and discount rate must assume risk neutrality, as 

when valuing options, the level of risk will change when these options are exercised. 
Thus, we must use the risk-free rate for discounting the incremental cash flows when 
the option is exercised, but these must be simulated using a risk-neutral expectation. 
Therefore, the GBM process defined by Eqs. (9)−(10) is used here to model the under-
lying uncertainty. Here, the uncertainty and correlations between the variables were 
taken into account in the same way as in the estimation of the static NPV. 

4. Data and results of calculations 

 4.1. Data used for the calculations 

Table 1 presents the correlation matrix for the prices of the products analysed. The 
coefficient of correlation between apparent consumption of HDG sheet and of OC sheet 
is 0.501. 

Table 1. Correlation matrix for the prices of the products analysed 

Product Scrap CR sheet HDG sheet OC sheet
Scrap 1.000 0.930 0.952 0.936
CR sheet 0.930 1.000 0.839 0.809
HDG sheet 0.952 0.839 1.000 0.828
OC sheet 0.936 0.809 0.828 1.000

Source: author’s calculations, based on the historical 
time series of the prices on Polish market from years 
1996−2016. 

 
The coefficients of the interval regression equations depicting the interrelations be-

tween the i for the prices of particular product ranges are shown in Table 2, and for 
apparent consumption in Table 3. The weighted average cost of capital, considering the 
financial leverage typical of this industry, for this type of steel plant is assumed to be 
10% per year in real terms and the risk free rate is 5% [20]. 
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Table 2. Coefficients of the interval regression equations  
depicting the interrelations between the i for the prices of particular product ranges 

Independent 
variable  

Dependent variable
Scrap CR sheet HDG sheet OC sheet 

Scrap a1 [–0.057, 1.930] [0.373, 1.381] [0.601, 1.565] 
a2 [–0.021, 0.001] [–0.006, –0.002] [0.003, 0.009] 

CR sheet a1 [–0.908, 2.992]  [–1.589, 3.317] [–1.705, 3.848] 
a2 [–0.011, 0.036]  [–0.017, 0.035] [–02.029, 0.066] 

HDG sheet a1 [0.733, 1.516] [0.411, 1.650] [0.527, 1.912] 
a2 [0.003, 0.006] [–0.010, –0.003] [0.005, 0.018] 

OC sheet a1 [0.065, 1.764] [–2.280, 3.986] [–0.610, 2.216]   
a2 [–0.010, 0.000] [–0.067, 0.039] [–0.024, 0.007]   

Source: cf. footnote to Table 1. 

Table 3. Coefficients of the interval regression equations  
depicting the interrelations between the i  

for the apparent consumption of HDG sheet and of OC sheet 

Independent variable Dependent variable
HDG sheet OC sheet

HDG sheet a1 [–0.238, 0.804]
a2 [–0.047, 0.157]

OC sheet a1 [–1.623, 3.495]
a2 [–0.043, 0.092]

Source: cf. footnote to Table 1. 

Analysis of the time series for the price of OC sheet from 1996 to 2016 in real terms 
shows an average growth rate of 0.97% per year. For the prices of other products, the 
average growth rate is as follows: HDG sheet – 1.61%, CR sheet – 1.88%, scrap  
– 1.72%. Nevertheless, we use the trapezoidal number (0.9, 1.1, 1.3, 1.5%) to describe 
the drift for all of these products, as it is assumed that this increase was partly a result 
of the structural changes occurring in this sector during the economic boom, which oc-
curred in 2006–2007. 

Analysis of the time series for the apparent consumption of OC sheet and HDG 
sheet (from 1996 to 2016) shows an average growth rate of 8.00% per year for HDG 
sheet and 9.26% for OC sheet. Nevertheless, we use the trapezoidal number (6.0, 6.5, 
7.0, 7.5%) as the drift for all of these products as it is assumed (as above) that this 
increase was partly a result of the structural change occurring in the sector during the 
economic boom, which occurred in 2006–2007. 

The volatility parameters were estimated using the standard deviation of the log return 
of the price series and demand series (from 1996 to 2016). These values are equal to: 

For prices, %: 
Scrap  16.33 
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CR sheet 21.05 
HDG sheet 19.62 
OC sheet 13.56 
For apparent consumption, %: 
HDG sheet 11.77 
OC sheet 16.43 
For similar reasons as before, in the calculations we adopted the following trapezoi-

dal numbers describing volatility: 
For prices, %: 
Scrap  13.0, 14.0, 15.0, 16.0 
CR sheet 15.0, 17.0, 18.0, 20.0 
HDG sheet 15.0, 17.0, 18.0, 20.0 
OC sheet 10.0, 11.0, 12.0, 13.0 
For apparent consumption, %: 
HDG sheet  8.0, 9.0, 10.0, 11.0 
OC sheet 12.0, 13.0, 14.0,15.0 
The other variable production costs, (energy, manpower and maintenance) amount to 

approximately USD 114.0 per ton of HDG sheet and USD 174.0 per ton of OC sheet. The 
fixed costs for the HDG sheet plant are estimated at USD 31.08 million per year. The incre-
mental fixed costs for the OC sheet plant are estimated at USD 12.95 million per year. The 
initial investment for the OC sheet plant amounts to approximately USD 40 million. 
The market share for HDG sheets was assumed to be 30% and for OC sheets 25%. 

The premiums () on the basis of statistical data were estimated as follows: 
For prices, %: 
Scrap  0.81 
CR sheet 0.79 
HDG sheet 1.01 
OC sheet 0.75 
For apparent consumption, %: 
HDG sheet 1.32 
OC sheet 2.11 
For the calculations we adopted the following trapezoidal numbers: 
For prices, %: 
Scrap  0.77, 0.80, 0.82, 0.85 
CR sheet 0.75, 0.77, 0.80, 0.82 
HDG sheet 0.97, 0.99, 1.02, 1.05 
OC sheet 0.71, 0.73, 0.76, 0.78 
For apparent consumption, %: 
HDG sheet 1.28, 1.30, 1.33, 1.35 
OC sheet 2.07, 2.10, 2.13, 2.15 
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Simulations were carried out on the basis of these assumptions and the static NPV 
and value of the product switch option for the project of constructing a new OC sheet 
plant were calculated. 

4.2. Results and discussion 

Figures 2 and 3 show the upper and lower probability distribution function of the 
static NPV and the upper and lower probability distribution function of the value of the 
product switch option for the project – construction of a new OC plant. For comparison, 
Figures 2 and 3 present results based on an approach that takes into account the corre-
lation between variables alongside results based on a variant that does not take these 
correlations into account. Table 4 summarizes the values found for the project – con-
struction of OC plant containing a product switch option (calculation based on the var-
iant taking into account the correlation between the primary variables).  

 
Fig. 2. Upper and lower cumulative distribution functions for the static NPV of the project  

Construction of a new OC plant: without (a) and taking into account (b)  
the correlation between the primary variables 

 
Fig. 3. Upper and lower cumulative distribution functions for the value  

of a product switch option for the project Construction of a new OC plant  
without (a) and taking into account (b) the correlation between the primary variables 
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Based on the probability distribution functions depicted in Figs. 2 and 3, one can 
specify intervals containing the probability of the occurrence of a particular event. For 
example, according to Fig. 3b, the probability that OPT  17.4 million USD is in the 
range [0.046, 0.126]. The difference between the upper and lower boundary of this range 
results from the lack of precision in estimating the parameters of the model. If the deci-
sion maker considers that this difference is too great, he/she can commission an addi-
tional study that will increase the precision of estimating these parameters. 

Table 4. Value of the product switch option and static NPV of the OC plant 

OC plant Average value
[thousand USD] Lower, upper bound 

Static NPV 15 625.7 (–69 044.7, 99 063.5)
Extended NPV 21 804.2 (–26 624.0, 69 739,6)

 
The average values were calculated on the basis of the probability distribution de-

termined by the average value of the upper and lower probability distribution func-
tions [19]. The lower and upper bounds were calculated on the basis of the lower and 
upper cumulative distribution functions.  

Based on the data in Table 4, it can be concluded that the average value of the prod-
uct switch option is equal to 6 178.5 thousand USD. This means that the average ex-
tended NPV of the OC plant is 39.5% greater than the average of its static NPV. A com-
parison of Figs. 2a, 3a and 2b, 3b indicates that the correlations between parameters 
significantly influence the probability distribution function of the NPV and value of the 
switch option. Hence, ommission of these correlations leads to systematic errors in es-
timating the NPV and value of the option.  

5. Conclusion 

A new method for valuing switch options has been suggested. This method is based 
on the probability theory and the theory of fuzzy sets. We assume that some parameters 
of the model for pricing real options cannot be described precisely and therefore they 
are introduced into the model as fuzzy numbers. This assumption enables us to consider 
various sources of uncertainty, not only stochastic ones and to retain more information 
about the possible value of a real option. This approach is particularly useful in the case 
of projects with a long economic life. A computational procedure for deriving the value 
of a switch option is also proposed. Under the assumptions of fuzzy volatility and fuzzy 
drift parameters, the value of a switch option turns into a random fuzzy number. 
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The range of applications of this model include long-term financial decision-making 
and the methodology for valuing real options. Hence, further development and verifica-
tion of such fuzzy-stochastic models might be useful. 

The example analysed indicates that, in the steel industry, inclusion of an invest-
ment project's switch option in the analysis has a significant impact on its valuation. In 
the case of uncertainty described by fuzzy numbers, modelling the relationships be-
tween the primary variables is a very important problem. Ignoring these dependencies 
leads to systematic errors in the valuation of investment projects.  
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