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EFFICIENCY MEASUREMENT IN DYNAMIC  
TWO-STAGE NETWORK STRUCTURES  

WITH FLEXIBLE INTERMEDIATE MATERIALS 

Data envelopment analysis (DEA) is a nonparametric method for evaluating the relative efficiency 
of decision making units (DMUs) described by multiple inputs and multiple outputs. Since DEA was 
introduced in the 1970s, it has been widely applied to measure the efficiency of a wide variety of pro-
duction and operation systems, including two-stage production systems with a series or parallel struc-
ture. The outputs from the first stage to the next stage are called intermediate factors (or measures). In 
some real applications, an intermediate material or some part of it can become the final output or input 
to the second stage of production. Previously existing models cannot be employed directly to measure 
the efficiency of such systems. The authors introduce a dynamic DEA model that identifies the structure 
of flexible intermediate factors to maximise the measure of overall system efficiency. 
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1. Introduction 

Following a seminal work by Farrell [11] on the measurement of production effi-
ciency and work by Charnes, Cooper, and Rhodes [3], data envelopment analysis (DEA) 
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became a popular empirical method for measuring the relative efficiency of a set of 
homogeneous decision making units (DMUs). In many cases, DMUs may consist of 
two-stage structures with intermediate factors (also called measures). Seiford and Zhu 
[15] extended this analysis to two-stage processes by applying standard DEA metho-
dology separately to each stage, without considering the interaction between the two 
stages. Zhu [17] and Chen and Zhu [7] indicate that the overall efficiency of a DMU 
requires all the individual stages to be efficient. Kao and Hwang [12] investigate the 
decomposition of efficiency in a two-stage production process where the outputs of the 
first stage are the inputs of the second stage. They take the alignment of the two sub-
processes in series into account when measuring the efficiencies. Chen et al. [4] 
presented a model similar to Kao and Hwang’s model, but with measurement having an 
additive form. Chen et al. [4, 6] examined relations and equivalencies between the existing 
DEA approaches to measuring the performance of two-stage processes. Chen et al. [5] 
proposed a DEA-based approach to evaluate the efficiency of two stage network 
systems and to determine the frontier points. Ebrahimnejad et al. [10] introduced a three-
stage DEA model with two independent parallel stages linking to a third final stage. 

In the studies mentioned above, it was assumed that the outputs of the first stage are 
purely inputs into the second stage. For instance, consider a supply chain consisting of 
two stages, supplier and manufacturer. The number of products shipped from the 
supplier to the manufacturer can be flexible in the sense that some proportions of 
intermediate products are shipped as final outputs (e.g., these products are placed on 
sale). The remainder of these intermediate factors are processed further by the 
manufacturer. Another instance of flexible intermediate materials is found in bank 
branches in Iran. An important function of Iranian commercial banks is to attract 
deposits (stage 1) and then to distribute these deposits (stage 2). A portion of the total 
attracted deposits should be distributed among customers and the remainder should be 
transferred to the Central Bank of the Republic of Iran. As far as we are aware, there is 
no DEA-based study considering this issue in the case where there is no information 
about how the intermediate materials are utilized. 

Flexible materials in DEA were initially introduced by Cook and Bala [8] and Cook 
and Zhu [9]. They applied this concept to materials with an unknown status from the 
point of view of being an input or output. Cook and Zhu [9] proposed an adaptation of the 
DEA method for classifying these materials by introducing a fractional programming 
problem. Toloo [16] claimed that Cook and Zhu’s model [9] may produce incorrect 
efficiency scores, due to a computational problem resulting from the introduction of a large 
positive number into the model. Amirteimoori and Emrouznejad [1] developed a DEA 
model to calculate the technical efficiency of DMUs with flexible materials. Amirteimoori 
et al. [2] proposed a flexible slacks-based measure (FSBM) of efficiency in which each 
flexible material can play the role of input for some DMUs and the role of output for 
others, in order to maximise the relative efficiency of the DMU under evaluation. 
Kordrostami and Jahani Sayyad Noveiri [13] introduced an approach to evaluate the 
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efficiency of DMUs in the presence of flexible and negative data. MA [14] proposed a 
two-stage DEA model which simultaneously considers the structure of inputs and 
intermediate materials in evaluating and decomposing efficiency. Taking previous stud-
ies into account, this paper proposes a modification of the standard two-stage DEA 
model to incorporate flexible intermediate materials. 

Therefore, the current paper firstly proposes a technology of dynamic two-stage 
systems taking into account flexible intermediate materials. Then, a non-radial DEA 
model is proposed to estimate the overall and period efficiency scores of dynamic two 
stage production systems when flexible materials are present. The proposed approach is 
applied to evaluate the performance of some banks in Iran. 

The paper is organized as follows: Section 2 describes the problem. Next, we intro-
duce our approach to modelling a two-stage production process in Section 3. Section 4 
applies the method to Iranian banks. The conclusions appear in Section 5. 

2. Dynamic two-stage production 

Suppose that there are n DMUs and production takes place in periods 1, ..., .t T
Also each DMU consists of two divisions and intermediate products created in stage 1 
are partly used as inputs to stage 2 (Fig. 1). In period t, ,  1, ...,jDMU j n  uses the ex-

ogenous input , 1, ...,t
ijx i m  and the carry over activities 1, ,  1, ...,t t

hw h H   which are 

generated in period 1t  . The link activity , 1, ...,t
kjz k K  acts as the vector of interme-

diate outputs. These K  outputs are flexible, in the sense that they can become final 
outputs or inputs into the second stage. We suppose that all the , 1, ...,t

kjz k K  are di-

vided into t t
k kjd z  and (1 ) ,t t

k kjd z 1, ...,k K where ,t t
k kjd z 1, ...,k K is an input into 

stage 2 and (1 ) ,t t
k kjd z 1, ...,k K is a final output. The observed split of the output zj is 

given by (1)
jz  and (2)

jz . (1)
jz  is used as input into the second stage and (2)

jz is final output from 

stage 1. Obviously, (1) (2)
j j jz z z  . The outputs from the second stage are , 1, ...,t

rjy r s  

and the carryover products , 1,  1, ...,t t
hw h H   that are used in period 1.t   

Let 1T  be the production possibility set of the technology under consideration for 
the first stage. We postulate the following: 

P1. Feasibility of observed data. 1( , )t t
j jx z T  for any 1, ..., .j n  

P2. Unbounded ray. 1( , )t tx z T  implies 1( , )t tx z T  for any 0.   



 S. KORDROSTAMI et al. 66

P3. Convexity. Let 1( , )t tx z T    and 1( , ) .t tx z T   Then for any [0,1], ( , )t tx z  

1(1 )( , ) .t tx z T      

 
Fig. 1. Dynamic two-stage production with flexible intermediate materials 

P4. Free disposability. 1( , ) , ,t t t tx z T x x   t t tz d z  and (1 )t t tz d z    implies 

1( , ) .t t tx z z T     

P5. Minimal extrapolation. For each T  satisfying the axioms P1–P4, we have
1 .T T   

Now, an algebraic representation of the production possibility set (PPS) of the tech-
nology 1,T  which satisfies the axioms P1–P5, is given. 

Theorem 1. The PPS 1T , which satisfies the axioms P1–P5, is defined as 

 
1 2

1
1 1 1

{( , ) | , , (1 ) ,

0 1,  0,  1, ..., }

n n n
t t t t t t t t t t t t t

j j j j j j
j j j

t t
j

T x z x x d z z d z z

d j n

  


  

    

   

  
  

(1)

 

Proof. The proof is clear. � 
Also, let 2T  be the production possibility set of the technology under consideration 

for the second stage. Again, to determine the technology of stage 2, we postulate the 
following: 
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Pʹ1. Feasibility of observed data 1, , 1
2( , , , )t t t t t t t

j j j jw d z y w T    and 1, 1 , 1( , , , )t t t t t t
j j j jw z y w   

2T  for any 1, ..., .j n . 

Pʹ2. Unbounded ray. 1, , 1
2( , , , )t t t t t t tw d z y w T    implies 1,( , ,t t t t tw d z  , 1

2, )t t ty w T   
for any 0t  . 

Pʹ3. Convexity. Let 1, , 1
2( , , , )t t t t t t tw d z y w T       and 1, , 1

2( , , , ) .t t t t t t tw d z y w T       
Then for any [0,1],  1, , 1 1, , 1

2( , , , ) (1 )( , , , ) .t t t t t t t t t t t t t tw d z y w w d z y w T               

Pʹ4. Free disposability. 1, , 1
2( , , , ) ,t t t t t t tw d z y w T   1, 1, ,t t t tw w    ,t t tz d z  t ty y   

and , 1 , 1t t t tw w    implies 1, , 1
2( , , , ) .t t t t t t tw d z y w T       

Pʹ5. Minimal extrapolation. For each Tʹ satisfying the axioms Pʹ1– Pʹ4, we have
2 .T T   

Now, an algebraic representation of the production possibility set (PPS) of the tech-
nology 2 ,T  which satisfies the axioms P1-P5, is given. 

Theorem 2. The PPS 2 ,T  which satisfies the axioms P1–P5, is defined as 

 

  1, 1, 1,1, , 1
2

1

1 , 1 , 1 , 1

1 1

1, , 1

1
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, ,

; 0 1, , , 0; 1, ..., }

n
t t t t t t t tt t t t t t t
j j

j

n n
t t t t t t t t
j j j j

j j

n
t t t t t t t t t
j j j j j

j

T w w d zw d z y w

z w w

y y d j n
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
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

 

 
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

 



  (2) 

Proof. The proof is clear. � 
In the definition of 1T  and 2 ,T it is assumed that the intermediate materials z are 

flexible and some of the intermediate products are consumed in the second stage and 
the remainder is exported as final outputs. In the proposed model, this measure describes 
how the intermediate products are freely distributed between the stages and gives the 
optimal set of appropriate proportions for the intermediate materials. 

3. Proposed two-stage DEA method 

In this section, the additive model is extended to evaluate the efficiency of dynamic 
two-stage systems when flexible intermediate materials are present. Using the constant 
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returns to scale expressions (1) and (2) to describe the first and second stages of tech-
nology, we introduce unit invariant additive model (3) to evaluate the efficiency of the 
DMU under consideration o: 

 

, , , , ,
1 1 2

1 1 1 1 1 1 1 1
max

s.t.

T m s K K K H H
t t t t t t t

o i r k k k h h
t i r k k k h h

s s s s s s s     

       

 
       

 
       

 

Stage 1 constraints: 

 
1

; 1, ..., , 1, ...,
n

t t t t
j ij i io

j
x s x i m t T



     (3.1) 

 1 , 1 2
1

1
( ), 1, ..., , 1, ...,

n
t t t t t t
j kj k k ko ko

j
z s d z z k K t T 



      (3.2) 

 2 , 1 2
2

1
(1 )( ), 1, ..., , 1, ...,

n
t t t t t t
j kj k k ko ko

j
z s d z z k K t T 



       (3.3) 

Stage 2 constraints: 

 1 , 1 2
1

1
( ), 1, ..., , 1, ...,

n
t t t t t t
j kj k k ko ko

j
z s d z z k K t T 



      (3.4) 

 
1

; 1, ..., ; 1, ...,
n

t t t t
j rj r ro

j
y s y r s t T



     (3.5) 

Carry-over constraints 

 1, 1, , 1,

1
, 1, ..., , 1, ...,

n
t t t t t t t
j hj h ho

j
w s w h H t T    



     (3.6) 

 , 1 , 1 , , 1

1
, 1, ..., , 1, ...,

n
t t t t t t t
j hj h ho

j
w s w h H t T    



     (3.7) 

 0 1; 1, ...,t
kd k K    (3.8) 

 , , , , 1, , 1, , , , , , , , , 0, , , , ,t t t t t t t t t t t t
i k k h h r j j j js s s s s s i k h r t            (3.9) 

Since we know that any software has limitations regarding the admissible number 
of constraints and variables, the possibility of decomposing such a problem will be ben-
eficial to practitioners who use a standard software package for measuring the efficiency 
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of networks involving a large number of processes. Taking this fact into account, we 
suggest solving the following smaller linear programming problems. 

 
, , , , ,
1 1 2

1 1 1 1 1 1 1
max

m s K K K H H
t t t t t t t t
o i r k k k h h

i r k k k h h
s s s s s s s     

      
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 s.t. 

Stage 1 constraints: 

 
1

, 1, ...,
n

t t t t
j ij i io

j
x s x i m


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1

1
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n
t t t t t t
j kj k k ko ko

j
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
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n
t t t t t t
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j
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      (4.3) 

Stage 2 constraints: 

 1 , 1 2
1

1
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n
t t t t t t
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j
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Carry-over constraints: 

 1, 1, , 1,

1
, 1, ...,

n
t t t t t t t
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j
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 , 1 , 1 , , 1

1
, 1, ...,

n
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j hj h ho

j
w s w h H    



    (4.7) 

 0 1, 1, ...,t
kd k K    (4.8) 

 , , , , 1, , 1, , , , , , , , , 0, , , , ,t t t t t t t t t t t t
i k k h h r j j j js s s s s s i k h r t            (4.9) 

 Theorem 3. The optimal objective value of (3), ,o  equals the sum of the optimal 

divisional slacks represented by t
o  for 1, ..., ,t T  that is, 

1
.

T
t

o o
t

 


  
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Proof. This is clear. � 

Theorem 3 states that oDMU  is efficient if and only if 0t
o   for all 1, ..., .t T  

Moreover, it shows that problem (3) can be divided into T  independent problems in the 
form of (4). The proof of Theorem 3 is easy and hence omitted. 

Definition 1. The efficiency of any two-stage system in a given period can be ob-
tained by 

, ,

1 1,
1 1 1

, , ,
1 2
1 2 , 1

1 1 1 1

11

11
2

t t tm K H
i k h
t t t t

i k hi k ht
o t t tts K K H

k k hr
t t t t t

r k k hr k k h

s s s
x z wm K H

E
s s ss

y z z wS K H

 


  

  


   

 
      

 
       

  

   
 

and the overall efficiency is equal to 

 
1

1 T
t

o o
t

E E
T 

   

The system o under evaluation is efficient for period t if and only if 1t
oE  , other-

wise it is inefficient. Furthermore, oDMU  is totally efficient if and only if 1oE  . 

4. Numerical example 

We apply the model for a dynamic network to 10 Iranian banks operating during 
two periods, t and t + 1. There exists some disagreement on whether deposits should be 
treated as an input or an output. An important function of Iranian commercial banks is 
to attract deposits (stage 1) and then to distribute these deposits (stage 2). A portion of 
the total deposits attracted should be distributed among customers and the remainder 
should be transferred to the Central Bank of the Republic of Iran. 

Similar to previous work on the evaluation of banks’ performance, bank’s processes 
are divided into two stages: the deposit process and loan process. There are two inputs 
in the first stage: fund from customers 1( )tx  and the number of cheque accounts 2( ).tx
The two outputs of this stage are the deposits distributed among customers 1( )tz  and 
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deposits transferred to the Central Bank 2( ).tz  Some portions of these deposits are dis-
tributed among customers in stage 2, and the remainder should be transferred to the 
Central Bank. The additional inputs for the second stage are characterized as unused 
assets in period 1t  1,( ).t tw   The final outputs of the second stage are recorded as the 
number of transactions 1( ),ty  loans 2( ),ty  profits 3( )ty  and unused assets in period t 

, 1( ).t tw   The data related to period t and period 1t   are provided in Tables 1 and 2, 
respectively. 

Table 1. Data set for period t 

Branch 1
tx  2

tx  1
tz  2

tz  1,t tw 
1
ty  2

ty  3
ty  , 1t tw   tz   

1 0.948 0.838 0.894 0.362 0.603 0.221 0.111 0.211 0.133 1.256 
2 1.33 1.233 0.678 0.188 0.982 0.232 0.212 0.210 0.073 0.866 
3 0.621 0.321 0.836 0.207 0.979 0.423 0.123 0.153 0.053 1.043 
4 1.783 1.483 0.869 0.516 0.720 0.514 0.214 0.114 0.054 1.385 
5 1.892 1.592 0.693 0.407 0.595 0.351 0.321 0.221 0.072 1.1 
6 0.990 0.790 0.966 0.269 0.936 0.021 0.121 0.221 0.094 1.235 
7 0.151 0.451 0.647 0.257 0.906 0.312 0.412 0.332 0.084 0.904 
8 0.108 0.408 0.756 0.103 0.574 0.723 0.323 0.423 0.104 0.859 
9 1.364 1.864 1.191 0.402 0.713 0.833 0.233 0.333 0.023 1.593 

10 1.922 1.222 0.792 0.187 0.715 0.133 0.333 0.235 0.087 0.979 

Table 2. Data set for period t + 1 

Branch 1
1
tx   1

2
tx   1

1
tz   1

2
tz   , 1t tw  1

1
ty   1

2
ty   1

3
ty   1, 2t tw    1tz    

1 0.848 0.938 0.694 0.462 0.403 0.121 0.211 0.311 0.233 1.156 
2 2.33 1.133 0.578 0.288 0.782 0.432 0.312 0.410 0.173 0.866 
3 0.521 0.421 0.846 0.217 0.879 0.323 0.122 0.143 0.043 1.063 
4 1.883 1.482 0.859 0.506 0.820 0.513 0.224 0.214 0.034 1.365 
5 1.992 1.492 0.593 0.417 0.695 0.352 0.311 0.211 0.172 1.01 
6 0.790 0.690 0.866 0.369 0.946 0.031 0.221 0.121 0.054 1.235 
7 0.451 0.351 0.657 0.247 0.926 0.212 0.422 0.312 0.184 0.904 
8 0.208 0.508 0.754 0.113 0.474 0.623 0.423 0.523 0.103 0.867 
9 1.564 1.764 1.181 0.412 0.813 0.834 0.223 0.333 0.033 1.593 

10 1.822 1.122 0.791 0.186 0.815 0.132 0.323 0.335 0.057 0.977 
 
Tables 3 and 4 report the results from the proposed model for periods t and t + 1, 

respectively. The second to tenth columns report the inefficiency slacks and the eleventh 
column presents the sum of the inefficiency slacks. For DMU8, all the slacks are equal 
to 0. Analysis of the slack variables reveals the status of excesses in input resources and 
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output shortfalls and indicates possible improvements in the ways of utilizing the inter-
mediate materials. The twelfth column reports the values of td  that indicate the optimal 
proportions of intermediate materials to be used as inputs in the second stage. 

Consider branch 3 for example. As seen in Table 1, 1 0.836tz   and 2 0.207tz  with  
1.043.tz  Based on the results displayed in Table 3, the optimal proportion td  is equal to 

0.8. This means that there is a need to change the relative values of the deposits distributed 
among customers and those transferred to the Central Bank. The appropriate value of de-
posits distributed among the customers should be dt*(zt) = 0.834 and (1 –  dt*)(zt) = 0.2086 
should be transferred to the Central Bank. From the results in Tables 3 and 4, we notice that 
both DMU7 and DMU8 are efficient in the period t + 1, but only DMU8 is efficient on ag-
gregate. 

Table 3. Results related to period t 

Branch 
Inefficiency slacks t

o  td  
1
t
is  2

t
is  ,

1
t

ks  ,
2
t

ks  ,
1
t

ks  1
t
rs  2

t
rs  3

t
rs  ,t

hs  ,t
hs  

1 0.73 0 0.30 0.21 0.36 0 0 0 0 0 1.60 1 
2 1 0 1.42 0.31 0 0.6 0.16 0.27 0.32 0.05 4.13 1 
3 0 0 0 0 0 0.38 0.23 0.31 0.34 0.06 1.33 0.8 
4 1.39 0 1.36 0.37 0.44 0.39 0.19 0.42 0 0.08 4.64 1 
5 1.47 0 1.85 0.40 0.32 0.4 0.01 0.22 0 0.04 4.70 1 
6 0.78 0 0.23 0.20 0 1.16 0.41 0.47 0 0.08 3.32 1 
7 0 0 0 0.07 0 0.39 0 0.13 0.11 0.03 0.73 0.94 
8 0 0 0 0 0 0 0 0 0 0 0.00 0.88 
9 0.87 0 1.86 0.47 0.65 0.07 0.17 0.19 0 0.11 4.39 1 
10 1.60 0 1.29 0.31 0.04 0.77 0.07 0.29 0 0.04 4.40 1 

 

Table 4. Results related to period t + 1 

Branch 
Inefficiency slacks 1t

o
  1td   1

1
t
is   1

2
t
is   , 1

1
t

ks   , 1
2
t

ks   , 1
1
t

ks   1
1

t
rs   1

2
t
rs   1

3
t
rs   , 1t

hs   , 1t
hs   

1 0.46 0 0.24 0.21 0.46 0 0 0 0 0 1.37 1 
2 1.87 0 0.82 0.25 0 0.25 0.17 0.19 0 0 3.55 1 
3 0 0 0 0 0 0.38 0.35 0.44 0.35 0.07 1.59 0.8 
4 1.28 0 0.83 0.33 0.06 0.56 0.51 0.69 0 0.14 4.41 1 
5 1.38 0 1.20 0.33 0 0.41 0.23 0.47 0 0 4.02 1 
6 0.03 0 0 0.42 0 0.99 0.47 0.74 0.17 0.11 4.93 1 
7 0 0 0 0 0 0 0 0 0 0 0.00 0.73 
8 0 0 0 0 0 0 0 0 0 0 0.00 0.87 
9 0.84 0 1.03 0.39 0.30 0.23 0.50 0.56 0 0.14 4.00 1 

10 1.36 0 0.69 0.25 0 0.68 0.23 0.34 0.20 0.08 3.82 1 
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Also, Table 5 presents the efficiency scores based on definition 1. Column 2 
indicates the efficiency of the branches in period t . The efficiencies of branches in 
period 1t   are presented in column 3. As shown, two branches 7 and 8 are efficient in 
period 1t   while branch 8 is the only efficient unit in period t . The overall efficiency 
of the branches is displayed in column 4. As can be seen, branch 8 is efficient in each 
period and overall. Therefore, it seems that branch 8 performs the best in comparison to 
the other branches. Also, branch 6 has the lowest efficiency score in each period. Con-
sequently, it appears that managers and decision makers should review their perfor-
mance and the use of their resources to improve efficiency. 

Table 5. The efficency scores 

Branch t
oE  1t

oE 
oE  

1 0.60 0.60 0.60
2 0.25 0.41 0.33
3 0.46 0.36 0.41
4 0.21 0.21 0.21
5 0.33 0.35 0.34
6 0.07 0.11 0.09
7 0.68 1.00 0.84
8 1.00 1.00 1.00
9 0.25 0.24 0.245

10 0.25 0.24 0.245
 
Now, to compare the results obtained from the proposed approach with those from 

existing models, we assume that the intermediate materials are purely used as inputs to 
the second stage. In this case, the constraints (4.2) and (4.4) in model (4) are substituted 
by the following constraints, respectively: 

 ,

1
, 1, ...,

n
t t t t
j kj k ko

j
z s z k K 



     

,

1
, 1, ...,

n
t t t t
j kj k ko

j
z s z k K 



    

Notice that the constraint (4.3) is omitted in this case and the objective function in 
model (4) is replaced by 

, , , ,

1 1 1 1 1 1
max

m s K K H H
t t t t t t

o i r k k h h
i r k k h h

s s s s s s     

     

             

Based on these substitutions, efficiencies are defined as follows: the efficiency of 
each DMU in each period can be calculated from 
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t t t t

r k hr k h

s s s
x z wm K H

E
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y z wS K H

 


  

 


  

 
       

 
      

  

  
 

and the overall efficiency is equal to  

1

1 T
t

o o
t

E E
T 

    

The results are shown in Tables 6 and 7.  

Table 6. Sums of slack variables 

Branch t
o  1t

o
  

1 1.42 0.83
2 1.96 4.17
3 2.57 2.47
4 3.94 4.15
5 3.83 3.98
6 3.53 3.36
7 1.68 2.14
8 0 0
9 3.30 3.46
10 4.03 4.17

It is assumed that intermediate materials
are purely used as inputs into stage 2.

Table 7. The efficency scores  

Branch t
oE   1t

oE   oE  
1 0.60 0.76 0.68
2 0.34 0.36 0.35
3 0.21 0.22 0.215
4 0.24 0.18 0.21
5 0.36 0.32 0.34
6 0.05 0.07 0.06
7 0.40 0.38 0.39
8 1 1 1
9 0.26 0.23 0.245
10 0.22 0.19 0.205

It is assumed that intermediate materials
are purely used as inputs into stage 2.
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According to both approaches, branch 8 is the most efficient overall and branch 6 
is the least efficient. Nevertheless, the results found by considering intermediate 
materials are different from those obtained from the proposed approach in a number of 
respects. According to the proposed approach, two branches, 7 and 8, were determined 
to be efficient in period t + 1, while only one branch 8 is inferred to be efficient 
considering z as the vector of intermediate materials in this period. Furthermore, the 
efficiency scores according to these two methods have significant differences for some 
branches, such as branch 7. The overall efficiency score of branch 7 is 0.84 when the 
utilization of deposits is regarded as flexible, whilst this value is 0.39 when the 
utilization of deposits is considered to be fixed. Furthermore, using the proposed 
approach, the measures of branch 1’s efficiency for the two periods were the same. 
However, the results obtained from the model which assumes that the utilization of 
deposits is fixed indicate that branch 1 has improved its performance in period t + 1 
compared to period t. Therefore, determining the role of factors is a significant aspect 
of calculating accurate efficiency scores and rational decision making. 

5. Conclusions 

A dynamic DEA-based model has been proposed to analyse two-stage processes 
with flexible intermediate materials. In many real-life situations, only a certain propor-
tion of the intermediate materials are used as inputs in the second stage, for example, in 
the banking example referenced in this paper. Basic two-stage DEA models cannot pro-
vide a good evaluation of the performance of such structures. The proposed model has 
identified the status of intermediate materials and argued how intermediate products 
should be utilized to increase the system’s overall efficiency. This paper has also incor-
porated the time factor into evaluating processes. The approach was illustrated using 
a data set based on 10 Iranian banks for two consecutive periods. 
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