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Leszek KLUKOWSKI1 

DETERMINING AN ESTIMATE OF AN EQUIVALENCE  
RELATION FOR MODERATE AND LARGE SIZED SETS2 

This paper presents two approaches to determining estimates of an equivalence relation on the 
basis of pairwise comparisons with random errors. Obtaining such an estimate requires the solution of 
a discrete programming problem which minimizes the sum of the differences between the form of the 
relation and the comparisons. The problem is NP hard and can be solved with the use of exact algo-
rithms for sets of moderate size, i.e. about 50 elements. In the case of larger sets, i.e. at least 200 com-
parisons for each element, it is necessary to apply heuristic algorithms. The paper presents results (a sta-
tistical preprocessing), which enable us to determine the optimal or a near-optimal solution with 
acceptable computational cost. They include: the development of a statistical procedure producing com-
parisons with low probabilities of errors and a heuristic algorithm based on such comparisons. The 
proposed approach guarantees the applicability of such estimators for any size of set. 

Keywords: estimation of an equivalence relation, pairwise comparisons with random errors, concept of 
nearest adjoining order 

1. Introduction 

The estimators of an equivalence relation based on multiple pairwise comparisons 
with random errors, proposed by Klukowski [9, 10], require the optimal solution of 
a discrete programming problem. Such a solution minimizes the difference between the 
form of a relation, determined in an appropriate way, and the comparisons. Under non-
restrictive assumptions about errors in comparison, these estimates are consistent. The 
solution time is of exponential type [9] – as the number of pairwise comparisons in-
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creases. Such optimization problems can be solved with the use of appropriate algo-
rithms: complete enumeration – for sets including not more than several elements, dis-
crete mathematical programming – up to 50 elements (assuming single comparisons of 
each pair), heuristic approaches – for sets exceeding 50 elements, especially in the case 
of multiple comparisons of each pair. Heuristic algorithms reduce computational costs, 
but can provide questionable solutions in the case when the probabilities of errors in 
comparisons are not close to zero. However, a large number of comparisons of any sin-
gle element, i.e. at least 200 single comparisons or 100 multiple comparisons, can be 
advantageous. This is so, because such sized sets allow us to carry out some prepro-
cessing and obtain new single comparisons with significantly reduced probabilities of 
errors. These comparisons can be generated with the use of the statistical procedure 
proposed in this paper. Such results can be used as the basis of the proposed heuristic 
algorithm and also as a starting point for an exact discrete algorithm. The computational 
cost of such a “combined” approach is typically acceptable. These features make the 
proposed approach, based on the concept of nearest adjoining order (Slater 1961), 
highly efficient and applicable for any size of set. 

The paper consists of five sections. The second section presents the estimation prob-
lem, assumptions about pairwise comparisons and the form of the estimator. In the third 
section, we describe concisely some well-known optimization problems used to esti-
mate an equivalence relation and suitable for sets with a moderate number of elements. 
The fourth section presents a statistical procedure generating pairwise comparisons with 
reduced probabilities of errors, based on a large number of initial comparisons, and the 
proposed algorithm. The last section summarizes the results. 

2. Estimation problem, assumptions about comparisons,  
form of the estimator 

2.1. Estimation problems 

We are given a finite set of elements 1{ , ..., }mx xX  (3  m < ). It is assumed that 
for the set X there exists an equivalence relation satisfying the conditions of reflexivity, 
transitivity and symmetry. This relation generates a family of subsets * *

1, ..., n   
( 2),n  where each subset only includes equivalent elements. 

The family * *
1, ..., n   has the following properties: 

 *

1

n

q
q



 X  (1) 
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  * * ( )r s r s   0  (2) 

where: 0 – the empty set,  
equivalent elements 

 *, ,i j i jrx x x x   (3) 

non-equivalent elements 

 * *( ) ( ) , ( , )i j i jr s i j r sx x x x        (4) 

Any relation defined by (1)–(4) can be alternatively defined by the values ( , )i jT x x  
(( , ) )),i jx x  X X  where 

 
* *0 if there exists such that ( , )

( , )
1 otherwise

i jr r
i j

x xT x x
   


  (5) 

2.2. Assumptions about pairwise comparisons 

The relation * *
1, ..., n   is to be estimated on the basis of N (N  1) comparisons of 

each pair ( , )i jxx X  X. Any comparison ( , ) ( 1, ..., )i jk k Ng x x   estimates the ac-
tual value of ( , )i jT x x , subject to disturbance by a random error. 

The following assumptions are made: 
A1. The number of subsets n is unknown. 
A2. The probabilities of errors ( , ) ( , )i j i jk Tg x x x x  ( 1, ..., )k N  have to satisfy 

the following assumptions: 

 ( ( , ) ( , )) 1 ( (0,1/2))i j i jkP Tg x x x x        (6) 

 ( ( , ) ( , )) ( ( , ) ( , )) 1i j i j i j ik k jP T P T xg gx x x x x x x     (7) 

A3. The comparisons ( , )i jkg x x  (( , ) ;i jx x  X X  1, ..., )k N  are independent 
random variables. 

Assumptions A2–A3 reflect the following properties of distributions of errors in 
comparisons:  
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 the probability of correct comparison is greater than the probability of incorrect 
comparison (inequalities (6), (7)),  

 zero is the median (in a “sharp” form) and mode of each distribution of the com-
parison error,  

 the comparisons are realizations of independent random variables, 
 the expected value of any error can differ from zero. Assumptions (1)–(3) are 

weaker than those commonly used in the literature (see [2]); they correspond, e.g., to 
the results of testing statistical hypotheses. 

2.3. The form of the estimator 

The estimator presented by Klukowski ([9], Chap. 3, [10]), is based on the sum of 
the absolute differences between the form of the relation (the values ( , ))i jT xx  and the 

comparisons ( , )i jkg x x  (( , ) ).i jx x  X X  The estimates will be denoted by ˆ1ˆ ˆ, ..., n   

or ˆ( , ).i jT x x  They are obtained on the basis of the following discrete minimization prob-
lem: 

 
, 1, ...,

( , ) ( , )min
mr r

N

i j i jk
i j kRF

tg x x x x
    

   
 X

 (8) 

where: FX  – the feasible set: the family of all relations 1, ..., r   in the set X, 

( , )i jt x x  – the values describing any relation 1{ , ..., }r   from ,FX  Rm – the set of the 
form { , 1 , ; }.m i j i j m j iR        

The estimate based on the objective function (8) may not be uniquely defined and 
the value of the function (8) is non-negative. 

2.4. Properties of estimators 

The analytical properties of such an estimator are based on the random variable: 
( , ) ( , )

m i j i jkR k Tg x x x x  . The following results have been obtained by Klukow-

ski [9], where: 
A. Expected values:  

( , ) ( , )
m

k i j i j
R k

E g x x T x x
 

  
 
  and ( , ) ( , )

m
k i j i j

R k
E g x x T x x  
 

  
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i.e. the values corresponding  to the actual and to any other relation ( , ),i jT x x satisfy the 
inequality: 

 
1 1, ,

( , ) ( , ) ( , ) ( , )
m m

N N

i i j i i jk kj j
k ki j i jR R

E T E Tg gx x x x x xx x
    

   
     

   
       (9) 

B. The variances of the above random variables divided by the number of compar-
isons N converge to zero, as ,N  i.e. 

 
1,

1,

1Var ( , ) ( , ) 0lim

1Var ( , ) ( , ) 0lim

m

m

N

i j i jk
N ki j R

N

i j i jk
N ki j R

x x T x xg
N

x x T x xg
N

  

  

 
  

 
 

  
 

 

  
  (10) 

C. The probability of the inequality  

( , ) ( , ) ( , ) ( , )
m m

k i j i j k i j i j
R k R k

g x x T x x g x x T x x       

being satisfied converges to one as N  , i.e.: 

 
1 1, ,

lim ( , ) ( , ) ( , ) ( , ) 1
m m

N N

k i j i j k i j i jN k ki j i jR R

P g x x T x x g x x T x x


    

 
    

 
      (11) 

Moreover,  

 
1 1, ,

2

( , ) ( , ) ( , ) ( , )

11 exp 2
2

m m

N N

k i j i j k i j i j
k ki j i jR R

P g x x T x x g x x T x x

N 

    

 
   

 
        

   

    

 
(12)

 

Inequality (12) is based on the Hoeffding ([6] inequality. 
Relationships (A)–(C) guarantee consistency and fast convergence of the estimators 

to the actual relation. 
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3. Optimization problems defining estimates  
of the equivalence relation 

Optimal solutions of the problem (8) can be obtained with the use of discrete opti-
mization algorithms, also applied in the cluster analysis. They are usually formulated 
for a fixed number n (because methods exist for determining this number, see, e.g., [3], 
p. 3.5). Such discrete algorithms has been presented by numerous authors [5, 4, 1, 3, 
Chap. 3]). 

 An initial approach [11] has the form: 

 
1 1 1

min
n m m

kl kj lj
j k l

d z z
  

 
 
 
  (13) 

 
1

1 ( 1, ..., )
n

kj
j

z k m


   (14) 

 {0,1} ( 1, ..., , 1, ..., )kjz j n k m    (15) 

where: dkl  – distance (dissimilarity) between elements xk, xl, zkj – decision variable 
equals 1 if an element xk is assigned to the j-th cluster, zero otherwise. 

The problem (13)–(15) has a quadratic objective function, linear constraints and 
{0, 1} variables. It can be applied for the case of single comparisons of each pair in the 
following way: the distances kld  should be replaced by the comparisons 1( , )k lg x x  and 
the optimal solution *

kjz  determines the form of n subsets. The problem can also be applied 

in the case N > 1 by using the median from the comparisons 1( , ), ..., ( , ).i i jNjxg gx x x  
The problem (13)–(15) is hard to solve in its original form and, therefore, is linear-

ized by assuming kj ljkljy z z  and adding the constraints 1,kj ljkljy xz    ,kjkljy z

.ljkljy z  This modified problem also has some drawbacks, especially the large number 
of variables. Therefore, other approaches have been proposed for the problem of esti-
mating an equivalence relation [5, 4]: 

 
1

1 1
min

m m

kl kl
k l k

d z


  

 
 
 
   (16) 

 1 ( 1, ..., 2)kl lq kq k mz z z      (17) 



Estimate of an equivalence relation for moderate and large sized sets 

 

51

 1 ( 1, ..., 1)kl lq kqz z z l k m         (18) 

 1 ( 1, ..., )kl lq kq q l mz z z      (19) 

 {0,1} ( 1, ..., 1; 1, ..., )klz k m l k m      (20) 

The optimization problem (16)–(20) can be solved with the use of dual linear relaxation 
and the revised simplex algorithm. However, this approach need not always provide an op-
timal solution and other approaches have also been developed  [4, 5]. In general, they can 
be used when the number of elements is not (significantly) greater than 50. 

4. Algorithm based on a procedure reducing the probabilities of errors 

The problem (8) can be effectively solved with the use of heuristic algorithms in 
the case when the probabilities of errors in comparison are close to zero. Such proba-
bilities indicate a low fraction of incorrect comparisons – the expected number of 
errors is equal to ( ( 1)/2) .m m N  A large number of elements, i.e., 100,m   together 
with multiple comparisons (N > 1) or 200m  , allows us to obtain “new” comparisons 
with probabilities of errors significantly lower than . The basis for such comparisons 
are statistical tests which infer the form of the distributions of parallel compari-
sons: 1( , )ikg x x  and 1( , ), ...,rkg x x ( , )i mkg x x  and ( , )r mkg x x  ( 1, ..., ; ).k N r i   

 The null hypothesis has the form H0: all the comparisons ( , )i jkg x x  and ( , )r jkg x x  
( 1, ..., ; , ; )k N r i j i j    have the same distributions, while under the alternative 1 :H  
some of these comparisons have different distributions. These hypotheses can be re-
placed by: 0H : ix , rx  are equivalent and 1H : ix , rx  are not equivalent. The statistic 
proposed below is based on the values of the comparisons ( , )i jkg x x  and 

( , )r jkg x x  ( 1, ..., ; , ).k N r i j   For ( 1) 200,m N   it has a Gaussian limiting distri-
bution. This test allows us to estimate the probabilities of both types of errors. It is 
appropriate to assume that they take similar values. It is clear that such a test signifi-
cantly reduces the probability of error, . 

4.1. Test for the equivalency of elements 
The proposed test is based on the random variables: 

 
1 if ( , ) ( , )

0 if ( , ) ( , )
i j r jk k

irjk
i j r jk k

g gx x x x
g gx x x x


  


 ( 1, ..., ; , )k N r i j    (21) 
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The parameters of these (zero-one) variables are as follows: the expected value as-
sumes, under H0, the form: 

 2 2
0( ) (1 , ( , ; ))irjkE r i j j iH        (22) 

the variance – the form: 

 2 3
0Var( ) 2 (1 2 )3 4irjk H         (23) 

If H1 is true, and xi equivalent to xj or xr equivalent to xj,  then the parameters of the 
variable irjk  take the form: 

 2 3
1 1( ) 2 (1 ) and Var( ) 2 (1 3 4 2 )irjk irjkE H H              (24) 

It is obvious that: 

 2 2
0 1( ) (1 ( ) 2 (1 ))irjk irjkE EH H           (25) 

and that the difference between these expressions is equal to: 1 4 (1 ).    

The same parameters can be determined for the variables ( 1, ..., ),irik k N  i.e., 

for  j = i, assuming ( , ) 0.i ikg x x   They assume the form: 

 0( ) 1irikE H      (26) 

 0Var ( ) (1 )irik H       (27) 

 1( )irikE H     (28) 

 1Var( ) (1 )irik H       (29) 

The variables irik  have higher expected value and lower variance than the varia-

bles ( )irjk j i  . The above results show that the expected values of the variables: 

 0 1
, 1 , 1

1 1( ) and ( ) ( 1) ( 1)
N N

irjk irjk
r i j k r i j k

E H E Hm N m N 
        (30) 
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are not the same: the expected value of the variable corresponding to H1 is lower, while 
the variances of both variables are the same. Thus, the null hypothesis can be formulated 
in the form: 

 2 2
0

, 1
: ( ) ( 1)((1 ) (1 )

N

irjk
r i j k

H E N m N  
 

        (31) 

while the alternative is given by: 

 2 2
1

, 1
: ( ) ( 1)((1 ) ) (1 )

N

irjk
r i j k

H E N m N  
 

       (32) 

The variance of both variables is equal to: 

 0 1
, 1 , 1

2 3

Var Var

2( 1) (1 3 4 2 ) (1 )

N N

irjk irjk
r i j k r i j k

H H

m N N

 

    

   

   
   

   
      

    

(33)

 

In the case of large mN, the hypotheses (31), (32) can be replaced by: 

 2 2
0

, 1

1: ( ) (1 )( 1)
N

irjk
r i j k

H Em N  
 

   
   (34) 

 2 2
1

, 1

1: ( ) (1 )( 1)
N

irjk
r i j k

H Em N  
 

   
   (35) 

Under the null hypothesis, the test statistic has the following Gaussian distribution: 

 

2 2

2 3
2

1exp. v. = (1 ) 1
(1 )1var  = 2 1 3 4 2 )( 1) ( 1)

m

m N m N

 

    

  


       

  (36) 

The test has a one-sided rejection region, i.e., values lower than the critical value 
corresponding to the assumed significance level .  

An example 

Let us examine the example:  = 0.1, m = 100, N = 3. The difference between the 
expected values of the individual statistics 10( ) ( )irjk irjkE H E H   equals 0.64, the 

difference 0 1( ) ( )irik irikE EH H    equals 0.8, the variance of the distribution (36) is 
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equal to 0.0005 (standard deviation 0.02236). In the case of elements *
i px   and 

*
r qx  , ( , )i r p q   included in different subsets, each with 10 elements, the differ-

ence between statistics (31) and (32) is equal to 0.1244. Therefore, a test based on the 
Gaussian distribution guarantees that both probabilities of error are lower than 0.003 
and the expected number of incorrect comparisons is lower than 15 (the total number of 
comparisons is equal to 4550). 

The example shows that any significant reduction in the probability of an error  
requires the subsets * *

1, ..., n   to be of the appropriate size. Typically, the minimal size 
should be at least several percent of the number m. However, before estimation, these 
sizes are not known. Therefore, it is suggested that some minimal size *

min is assumed 
to guarantee the necessary reduction in the probability  (this can be done on the basis 
of the distribution of the test statistic (36)). Next we should detect and exclude elements 
of subsets of size lower than *

min.  These elements may be associated with an estimate 
based on a reduced set of equivalence groups, as a next step. 

The detection of “small” subsets can also be done based on a statistical test. The null 
hypothesis assumes the following form: ( , ) 1 ( 1, ..., ).i j

j i
T m i mx x 



      Under the 

alternative, ( , ) 1,i j
j i

T mx x 


    where:   is a natural number guaranteeing the required 

reduction in the probability of error  ; typically ( 1),m   where  = 0.05. This test can 

be based on the statistic: 
1

(1/ ) ( , ).
N

i jk
j i k

N x xg
 
  Its expected value and variance can be de-

termined under the null hypothesis; they are equal to ( 1 )(1 )m        and 
( 1) (1 )/ ,m N    respectively. Under the alternative, the expected value is lower than 
( 1 )(1 )m       , the variance is the same. In the case 200mN  , the Gaussian as-
ymptotic distribution can be applied. Rejecting the null hypothesis for an element xi means 
that it does not belong to a small subset. Rejecting it for the whole set X indicates a lack of 
small subsets. The opposite result, acceptance of H0 – indicates inclusion into a small subset. 

The comparisons obtained after the above preprocessing (with low probabilities of 
errors and without small subsets) are satisfactory for heuristic algorithms performing 
the partitioning or agglomeration of elements. The algorithm proposed below belongs 
to the second group. 

4.2. The form of the algorithm 
The comparisons obtained on the basis of the hypotheses H0 and H1 are denoted 

( , ) ( , ).mi j i jx x R     The result ( , ) 0i jx x   corresponds to H0, while 
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( , ) 1i jxx   – to H1. The comparisons ( , )i jx x  allow us to infer for each element 

,ix X  two sets: the former one, ( ),ix comprises the indexes of equivalent elements 
(corresponding to acceptance of H0), the latter, ( ),ix  the indexes of non-equivalent 
elements (corresponding to acceptance of H1). It is clear that for equivalent ele-
ments xi, xj we have ( ) ( ).i jx x   The sets ( ), ( )i jx x   satisfy the relationship 

( ) { } ( ) { }.i jj ix x     Thus, the algorithm minimizing the function (8) can be based 

on detecting subsets ˆˆ ( 1, ..., )r r n   with these features or similar features.  

START 
1. Exclude “small” subsets from the estimated relation and determine the probabil-

ities of errors for the test with hypotheses (31), (32). 
Test the null hypothesis H0 for ( , )jx xi  X X  against the alternative H1 (32) on the 

basis of comparisons ( , ), ( , ) ( 1, ..., ;i j r jk k k Ng gx x x x  , )r i j or assumed probabili-
ties of errors (the results ( , ) ( 1, ..., , )).i j i m j ix x    Determine the upper limit md 

of the difference ( , ) ( , )i j r j
j i

x x x x 


 : 

0,5
int [2 (1 )( 1) 3((2 (1 )(1 2 (1 ))( 1) 0.5]))dm m m               

where:  – significance level when testing H0, int[z] – integer part of z. 
2. Create (non-overlapping) subsets ( 1, ..., )s s n    from the elements of the set X 

with the following property: , ) , )i j r j d
j i

x x x x m 


    , for each  xi, xr  .s
 Deter-

mine the value of the objective function (8) after this operation. This value is denoted  Fcur. 
3. Determine the set , comprising elements of the set X with a significant contri-

bution to the value of the objective function Fcur, i.e. all the elements xi satisfying the 
inequality:  

( , ) ( , )i j i j h
j i

t x x x x m


 


 

where: 
0.5

( 1) 3( (1 )( 1))hm m m        

If the set  is empty ( # Δ 0)  go to 5. 
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4. Determine the best relocation for each element of the set , i.e. into a subset 
(1 )q q n     or a new subset 1n 

  which achieves the maximal decrease in the func-
tion (8). Perform these relocations starting from an element corresponding to the maxi-
mal decrease in the function (8). If the value Fcur has decreased in this step, return to 3. 

5. Accept (1 )q q n     as the estimate ˆˆ ( 1, ..., ).q q n   
END 

The above algorithm is composed of two phases. The former phase involves agglomer-
ating of all elements xi, xr with similar sets ( ),  ( )  , i.e. satisfying the inequality: 

( , ) ( , ) .i j r j d
j i

x x x x m 


   The value md is determined as the sum comprising: the ex-

pected value of the variable ( , ) ( , )i j r j
j i

x x x x 


  *(( , ) (1 ))i r q q nx x     and its 

three standard deviations, assuming binomial distribution of the sum (in fact some of its 
components can be not independent random variables, but three standard deviations 
“compensate” this fact). This phase ends when each subset (1 )s s n     includes ele-

ments satisfying the inequality ( , ) ( , ) .i j r j d
j i

x x x x m 


   Such a partition can be 

not unique; therefore objective function indicates the best result. 
The second phase is oriented at “improving” the estimate obtained in the first phase. 

The elements ix X  of the current estimate (1 )s s n     which have a significant 
contribution to the objective function (8) are detected. The threshold value of the con-
tribution mh is determined on the basis of expected value of the random variable 

( , ) ( , )i j i j
j i

t x x x x


 
 

 



 (( , )i r qx x    (1 ))q n    and its three standard deviations 

determined under assumption that ( , )i jt x x 


( , ).i jT x x  The elements with a significant 

contribution ( , ) ( , )i j i j
j i

t x x x x





 are relocated to subsets, which leads to a decrease 

in the value of the objective function (8). This phase ends after no such elements remain.  
An estimate corresponding to the value of the objective function being equal to zero 

gives an exact optimal solution, while those with low values – can be close to exact or 
even exact. It is clear that comparisons ( , )i jx x  (( , ) )i jx x  X X which have very low 
probabilities of errors (not greater than 10–3) are also useful for discrete programming 
algorithms for sets X with more than 50 elements. The computational cost may be ac-
ceptable in this case.  

The literature on this subject contains many other heuristic algorithms (see, e.g., [5]). 
The estimate obtained in such a way can be verified by testing the hypothesis stating that 
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such a relation exists against the hypothesis that comparisons are completely random or all 
the elements are equivalent (see, e.g., [9, 3, Chapt. 7]). Verifying the existence of individual 
subsets ˆˆ (1 )r r n    can be done with the use of, e.g., the Cochran test. 

5. Concluding remarks 

An algorithm for solving the optimization problem has been presented aimed at ob-
taining estimates of an equivalence relation on the basis of pairwise comparisons with 
random errors. The objective function of this problem expresses the difference between 
the form of the relation and the comparisons. Such an approach is applicable for mod-
erately sized (about 50 elements) and large sets (at least 100 elements with multiple 
comparisons). Cases with a moderately sized set can be solved with the use of well-
known exact algorithms. When a large number of comparisons are made, another ap-
proach is recommended, which allows the construction of tests generating “new” com-
parisons with significantly reduced probabilities of errors. Such comparisons enable ap-
plication of the heuristic algorithm proposed in this paper. The results obtained from 
such an algorithm can give a final estimate, if the value of the criterion function is equal 
or close to zero, or provides a starting point for exact algorithms. This algorithm per-
forms nearly perfectly when the probabilities of errors in comparisons are low (below 
0.01) and subsets are appropriately sized * (1 ).q q n    This results from the fact that 

the value ( , ) ( , )r j r j
j i

E x x x x 


 
 

 
  is significantly different in the cases 

*( , )r j qx x   and *( , ) .r j qx x   Thus, an approach based on minimizing the differences 
between the comparisons and the form of the relation is useful, computationally efficient 
and reliable for any size of set. It should be emphasized that the statistical properties of 
estimates based on minimizing the function (8) have been determined [9] and can be 
verified by the use of statistical tests. Moreover, their precision is also evaluated by the 
value of the objective function (8).  
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