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TWO PROCEDURES FOR ROBUST MONITORING  
OF PROBABILITY DISTRIBUTIONS OF ECONOMIC  
DATA STREAMS INDUCED BY DEPTH FUNCTIONS 

Data streams (streaming data) consist of transiently observed, evolving in time, multidimension-
al data sequences that challenge our computational and/or inferential capabilities. We propose user 
friendly approaches for robust monitoring of selected properties of unconditional and conditional dis-
tributions of the stream based on depth functions. Our proposals are robust to a small fraction of out-
liers and/or inliers, but at the same time are sensitive to a regime change in the stream. Their imple-
mentations are available in our free R package DepthProc. 
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1. Introduction 

The amounts of data nowadays at economists disposal, force them to use different 
decision algorithms to those used merely several years ago. On-line credit scoring, intru-
sion detection to the computer systems or algorithmic future contracts trading are exam-
ples of phenomena which have initiated the evolution of data analysis techniques and 
methods of statistical inference (cf. [10] for provoking overview of challenges which 
statisticians and econometricians face due to modern on-line science and trading). 

The main motivation of this paper relates to a new phenomenon which has ap-
peared in the economics literature in recent years called data stream analysis (DSA) 
(or streaming data processing). This terminology originates from theoretical informat-
ics [1, 20]. Generally speaking, in the case of DSA we have to cope with huge 
amounts of constantly updated data that enter, at non-equally spaced time points, 
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a processing system, and we have restricted memory and computational resources for 
processing the data. We are looking for sufficient, as well as computationally and 
memory tractable, statistics for the issues under our consideration. The algorithms 
applied in DSA have to fulfil strict criteria in the context of: 1) the speed of data 
transmission to a program, 2) computational complexity of the algorithm, 3) amount 
of memory necessary to apply the algorithm. An algorithm should be highly elastic in 
adaptation to changes in the data generating mechanism [2]. 

Although DSA originates from informatics, modern time series econometrics 
deals with similar research problems, for example in the context of analysing multi-
variate financial time series or studying sales data. Economic data streams additionally 
consist of a small or a moderate fraction of outliers or inliers of various kinds. From 
one point of view, we can say, that economic data stream analysis (EDSA) involves 
using locally sufficient statistical procedures which are robust to outliers and inliers, but 
at the same time sensitive to the data generating mechanism, and which are computa-
tionally tractable to a degree allowing their use on-line. From the other perspective, the 
EDSA mainly deals with detecting outliers, which contain useful information related to 
e.g., credit card fraud detection, law enforcement or certain intrusion detection. 

 

Fig. 1. Heating oil future contracts – asks Fig. 2. Heating oil future contracts – bids 

 

Fig. 3. 5-year US-T note contracts – asks Fig. 4. 5-year US-T note contracts – bids 

Figures 1–4 present order book data on future contracts for heating oil and 5-year 
US-T note contracts. These series may be treated as examples of economic data 
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streams, i.e., observations appear at non-equally spaced time points, the data contain 
isolated outliers and paths of outliers, data generating mechanism evolves rapidly in 
time. Note that, in situations like these, we cannot use popular moving average or 
ARIMA modelling setup for prediction purposes (data are not equally spaced; the 
underlying process is not stationary). 

In recent years, several approaches to EDSA have been proposed. These proposals 
involve parallel computing and, hierarchic algorithms for arriving data. It is worth 
noticing, that in the context of EDSA, we can observe a renaissance of well-known 
simple statistics which can be calculated using recursive and/or parallel calculation. 
We can list here: mean vectors, covariance matrices, dynamic least squares regression, 
the Kalman filter [14, 15]. 

In this paper, we consider selected issues related to the robust monitoring of con-
ditional and unconditional distributions of a data stream. Note, that in time series 
econometrics, the distribution conditioned on the observed past is called the predictive 
distribution. 

The remaining part of the paper is organized as follows. In Section 2, we briefly 
outline recent developments in the area of estimating the conditional distribution. In 
Section 3, we present a general framework for our considerations. In Section 4, we 
give a brief review covering elements of the concept of data depth. In Section 5, we 
propose two depth based strategies for online monitoring of conditional and uncondi-
tional data stream distributions. In Section 6, we discuss properties of the proposed 
strategies. Finally, we present concluding remarks in Section 7. The paper ends with 
references. 

2. Selected aspects of estimating a conditional distribution 

One aspect of estimating and monitoring a conditional distribution (CD) relates to 
the basic question whether observations of the past increase our abilities to react to 
future events. Monitoring a CD is related to detecting investment opportunities, con-
struction effective investment strategy, obtain insight into the relation between the 
future and the present of a certain economic phenomenon. The CD may be determined 
by a cumulative distribution function, density function or imprecisely (in general) by 
a certain set of descriptive measures. 

Let us consider a random vector ( , )X Y  with cumulative distribution function (cdf) 

( , ).F x y  We wish to estimate the conditional distribution function of Y given X = x, 

  ( ) | ,xF y P Y y X x y     (1) 
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In a typical setting, we have equally spaced in time i.i.d. observations 

1 1( , ), ..., ( , )n nX Y X Y  from a random vector ( , ).X Y Our goal is to estimate ( )xF y  

based on these observations. Recalling a representation of the conditional cdf at 
a point as a regression of an indicator variable [25, 26] 

   ( ) | { } |xF y P Y y X x Y y X x     1  

where {}1  is an indicator function, we can use a natural nonparametric estimator of (1) 

 
1

ˆ ( ) ( , ) { }
n

x ni n i
i

F y w x h Y y


  1  (2) 

where  ( , )ni nw x h denotes a certain sequence of weights (e.g. Nadaraya–Watson 

weights or local linear weights) with 0nh   being a bandwidth sequence, 0nh   as 
.n   

This approach was studied in [7] and [8], among others, and recently was present-
ed in [6]. 

Following [6], there are four general categories of approaches to estimating the 
conditional cdf: 

1. Fully nonparametric approach, where we have no assumption about the effect of 
the covariate X on the variable Y. 

2. Parametric approach, where the conditional distribution function can be ex-
pressed as ( , )xF y θ , for a certain vector of parameters .θ  

3. Semiparametric location-scale model: 

 ( , ) ( , )Y m X X      (3) 

where ( )m   and ( )   are known functions and the distribution of  is unknown, as 

well as. 
4. Nonparametric location-scale model 

 ( , ) ( , )Y m X X      (4) 

where ( )m   and ( )   are unknown smooth functions, and the distribution of  is un-

known. 
The estimators applied to DSA may belong to any of the above categories. How-

ever, they should be computationally tractable, robust to a small fraction of outliers 
and inliers and possess what might be called forgetting mechanism enabling adapta-
tion to a change in the data generating mechanism regime [2]. The simplest forgetting 
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mechanism may be obtained by introducing estimation basing on a moving window of 
a fixed, random or data driven length. 

Let 1 2, , ...{ } dX X    be an economic data stream, 1d  . A window ,i nW  de-

notes the sequence of points of the stream ending at iX  of size n, i.e., 

, 1( , ..., )i n i n iX X W , where 1 {1, 2, ...}i I   or { , 2 , 3 , ...},Ki I K K K   .K   

We make a decision at moment 1i   based on the information contained in a fixed 
number of windows 

1 1 1 1, , , , 1 1 1, ..., , , ..., , ...
K K K Ki n i n i n i n K K Ki I i I n n     W W   

1 1,( i n denotes all the collections of linear combinations of elements in 
1 1,i nW  – all the 

information contained in the window of length 1n  available at time i1). 

For further considerations, it is useful to introduce a fixed number of r reference win-
dows 1 , ...,r r

MW W  related to our prior knowledge about the M-regimes of the stream or 

related to various decision criteria. We assume that the reference windows r
jW  are con-

stant over time or are updated with significantly smaller frequency than the “working” 
moving window , ,i nW  which is the main tool for the stream analysis (say weeks and 

minutes, respectively). 
Monitoring the stream, we should note that for a stream consisting of several re-

gimes – a point which is outlying with respect to (w.r.t.), one regime may not be outly-
ing w.r.t. another regime. The procedure applied to the DSA should be robust but not 
very robust – it should be sensitive to regime changes but unaffected by outlying 
points at the same time. 

In the “classical” setting of CD estimation, several authors proposed various im-
provements of the estimator (2) appealing to the general idea of making some pre-
adjustment, inspired by some specific model structure, but without assuming that this 
model structure holds. 

Suppose that the relation between the present and the past may be expressed by 
means of a simple linear regression model 0 1 , 1, ..., ,i i iY X i n      where 

1, ..., n   are i.i.d. with the same distribution as   (denoted by F  and unknown). 

The CD of Y given X x  is thus 

  0 1 0 1( ) { | } | ( )xF y P Y y X x P X y X x F y x                (5) 

If a simple regression model holds, we can estimate ( )xF y  by 

  0 1 0 1
1

1ˆ ˆ ˆ ˆˆ ˆ( )
n

i
i

F y x y x
n     



      1  (6) 

where F̂  is the empirical distribution function of the residuals, 0 1
ˆ ˆˆ .i i iY X      
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Please note that for robust DSA, we can use robust estimators for simple regres-
sion such as the M-estimator, least trimmed squares estimator or deepest regression 
estimator [19]. 

In another family of approaches, data are pre-adjusted by some location and scale 
model 

  ( ) |m x E Y X x  and 2 2 2( ) | ( )x E Y X x m x       (7) 

We transform the observations iY  into ,a
iY  where 

 
( )

( )
a i i

i
i

Y m X
Y

X


   

or when the location and scale parameters need to be estimated 

 
ˆ ( )ˆ

ˆ ( )
a i n i

i
n i

Y m X
Y

X


   

This approach leads to the nonparametric pre-adjusted estimator 

 
1

ˆ ˆ( ) ( )ˆ ( ) ( , )
ˆ ˆ( ) ( )

n
a i n i n

x ni n
i n i n

Y m X y m x
F y w x h

X x 

  
  

 
 1  (8) 

Typical examples of estimators for ( )m   and 2( )   are local linear regression es-

timates. Using pre-adjustment of the data, we hope to reduce the bias of the estimator 
(while not increasing its variance). 

The CD may be determined as well by its conditional density function. In our 
opinion, the best proposal in this context is the conditional density estimator based on 
the local linear approximation proposed and studied by Hyndman and Yao [11] and 
implemented in the hdrcde R package [12]. 

Figures 5–8 relate to 5-min quotations of stocks belonging to the Dow Jones In-
dustrial Index in the period from 2008-03 to 2013-03. This period was divided into 
5 consecutive sub-periods of equal length. Figures 5–8 present estimated predictive 
distributions of the present value conditioned on the past values for one stock Catepillar 
Inc. belonging to the Dow Jones Industrial Index. The distributions were estimated 
using an estimator implemented within the hdrcde R package. It is easy to notice gen-
eral changes in the shapes of these distributions, but after a thoughtful look we can 
conclude that the distribution evolves from a bimodal distribution in a period of stag-
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nation to multimodal in the period of Greek crisis and back to bimodal in the next 
periods. We hope that the proposed strategies for robust analysis of the PD can pro-
vide a clearer picture of this evolution and also be conducted online, which would be 
useful in predicting future crashes. 

  

Fig. 5. The estimated PD from 2008-03 to 2009-03.
Source: Calculations using the hdrcde R package 

Fig. 6. The estimated PD from 2009-03 to 2010-03. 
Source: Calculations using the hdrcde R package 

  

Fig. 7. The estimated PD from 2010-03 to 2011-03. 
Source: Calculations using the hdrcde R package 

Fig. 8. The estimated PD from 2011-03 to 2012-03. 
Source: Calculations using the hdrcde R package 

The methods outlined above are computationally very intensive and due to the so 
called curse of dimensionality [3, 22], they perform relatively poorly in high dimen-
sional problems. Issues related to their robustness have not yet been well developed. 
Therefore, we further propose a simple but powerful method of robustly decreasing 
the complexity of the estimation for monitoring one-dimensional streams by appealing 
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to the well-known idea of binning [25, 26] by using multivariate Wilcoxon type statis-
tics in the case of monitoring multivariate data streams.  

3. Model for economic data stream and research issues 

One of the main features of economic data streams, relates to changes in their re-
gimes. The stochastic characteristics of a particular regime of the stream may be treat-
ed as a vocabulary, using which a market or social network responds to a certain 
event, unexpected news or government intervention. For the description of uncertainty 
related to data stream analysis, it seems natural to use one of the multi-regime time 
series models known in the econometric time series literature [24]. For our purposes, 
we propose to make use of two general schemes, respectively representing random 
and deterministic switching between regimes – the CHARME (conditional heteroske-
dastic autoregressive mixture of experts) for random switching between regimes (for 
details see [23]) and SETAR (self-exciting threshold autoregressive model) [24]. 

According to the CHARME model, a hidden Markov chain { }iQ  with a finite set 

of states {1, 2, ..., }M  drives the dynamics of the stream{ }:iX  

 1 1
1

( ( , ..., ) ( , ..., ) )ij i i p i ii p
j

M

j j iX S m X X X X   


    (9) 

with 1ijS   for iQ j  and 0ijS   otherwise, , , 1, ...,j jm j M  are unknown func-

tions and , 1, 2, ...,i ni   are i.i.d. random variables with mean zero. To be able to 

conduct statistical inference, we assume that iQ  changes its value only rarely, i.e., the 

observed process follows the same regime for a relative long time before any change 
in the regime occurs. 

The properties of and conditions for the geometric ergodicity of the model (9) are 
given in [23]. It is worth noticing that in the case of a mixture of 1M   regimes, the 
stationary conditions for (9) do not have to hold for all the states but only for those 
which are frequently visited. This is especially interesting in the context of modelling 
economic streams – we very often observe economic phenomena where non-stationary 
periods of panic (involving a major revision of predictions of the future), appear but 
do not dominate any general stationary tendency. The CHARME model represents 
a random switching scheme. 

Our second proposal for the modelling of streaming data concerns a relatively 
popular in the econometrics literature model with deterministic switching called 



Data streams induced by depth functions 63

SETAR assuming deterministic switching time. For a one-dimensional time series 
{Xt}, a SETAR model of order p is defined by: 

 
 ( ) 0 1 1

!
( )( ... )

! !t A j t j j t pj t p
j

n
X z b +b X b X

r n r   
1  (10) 

where 1, ..., MA A  denotes some finite partition of the real line, tZ  is a variable depend-

ing on which level a change in the regime occurs, usually tZ  is one of the lagged vari-

ables 1{ , ..., },t t pX X  ( )A x1  denotes the indicator function taking value 1 for x A  

and 0  in other cases. 
The SETAR model describes an asymmetry in how a process increases and de-

creases, as observed in practice. It uses piecewise linear models to obtain a better ap-
proximation of the equation for the conditional mean. However, in contrast to the tra-
ditional piecewise linear model that allows model changes to occur in the „time” 
space, the SETAR model uses a threshold in “space” to improve the linear approxima-
tion. Under the SETAR model, a transition between the regimes is determined by 
a particular lagged variable. Consequently, the SETAR model uses a deterministic 
scheme to govern transitions between regimes. Under the CHARME model, a stochastic 
scheme related to a hidden Markov chain rules the changes of the regime. In practice, 
the stochastic nature of states implies that one is never certain about which state tx  be-

longs to under the CHARME model. This difference has important practical implica-
tions in forecasting. For instance, classical econometric forecasts using the CHARME 
model are always a linear combination of those of forecasts produced by sub-models of 
individual states. But those obtained using the SETAR model only come from a single 
regime, provided that t px   is observed. Forecasts under a SETAR model are also based 

on a linear combination of those produced by models of individual regimes when the 
forecast horizon exceeds the delay p. It is much harder to estimate using the CHARME 
model rather than other models because the states are not directly observable. 

To take into account that in the case of DSA observations are not equally spaced 
and the intensity of observations may vary, models (9) or (10) may be additionally 
associated with a certain Poisson process. We develop this issue elsewhere. Economic 
data streams usually consist of a moderate fraction of outliers or inliers, i.e., instead of 
observing iX  we observe i i i iY X b  , where i ib  represents an additive outlier term 

(a point which in some sense departs from the majority of the data) or an inlier 
(a point which artificially increases the degree of multimodality of the data), ib  is an 

unobservable binary random variable ( 0) 1 ,iP b      being the fraction of outliers 

or inliers, i  – the random magnitude of an outlier or inlier [22]. 
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In the case of a monitoring the conditional or unconditional distribution of 
a stream, we distinguish a finite set  0 , ..., MR h h  of densities belonging to a certain 

family . For a fixed moment i, we can treat the elements of R  as 1M   hypotheses 

for a test, i.e., any   measurable function : {0, ..., }.i M  Our decision at 

moment i  depends on the value of a certain minimum distance test statistic: 

 
0

ˆarg min ( , )i i
n k

k M
d g h

 
  (11) 

where d denotes a distance, e.g., a Kolmogorov or Hellinger distance, ˆ i
ng  denotes an 

estimate unconditional or conditional density of interest. 
If we have the reference samples 1 , ...,r r

MW W  instead of the reference densities, 

we can estimate the densities using, for example, a kernel or local polynomial method. 
Under a given hypothesis * ,h R  for a fixed moment i, we are looking for an op-

timal procedure, i.e., a procedure satisfying 

  *
0

inf max
j

i
h

j M
P j


 

 
   (12) 

under the condition * ,( ( )) , 0 1,i nh
P W     and where inf denotes the infimum 

over all tests. 
The monitoring of a data stream comprises of a sequence of tests conducted at 

consecutive moments. Therefore, we are looking for a procedure minimizing criteri-
on (12) over a certain horizon {1, ..., },i T  i.e., we are searching for 

 
*

** *
1

inf
T

i

i


 


   (13) 

Appropriate choices of the distance and density estimator appearing in (11) are 
a crucial issue related to the quality of the analysis of a stream distribution. Using the 
Hellinger distance, we take into account the “integrated behaviour” of the distribution 
over the whole of its support, whereas using the Kolmogorov distance, we underline 
the worst behaviour at a point of the support. The general theoretical framework for 
studying (11)–(13) in the i.i.d. case may be found in [25, 26]. 

4. DSA tools induced by the data depth concept 

The data depth concept (DDC) was originally introduced as a way to generalize 
the concepts of the median and quantiles to the multivariate framework. A depth func-
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tion ( , )D F  ascribes to a given dx   a measure ( , ) [0, 1]D F x  of its centrality 

w.r.t. a probability measure F  over d  or w.r.t. an empirical measure nF   

calculated from a sample 1{ , ..., }.n
nX x x  The larger the depth of ,x the more central x  

is w.r.t. to F  or .nF  The best known examples of depth functions in the literature are 

Tukey and Liu depths (for further details see [16]). Although the DDC offers a variety 
of user-friendly and powerful tools, it is not well known to a wider audience. These tools 
are of special value in the context of DSA and in general for multivariate economics. 
Thinking in terms of an influential majority of multivariate objects concentrated around 
the center relates robust statistics for example with welfare economics. 

In the context of the EDSA, we recommend using the weighted pL  depth. The 
weighted pL  depth ( ; )D Fx  of ,dx  1d   generated by a d-dimensional random 

vector X  with distribution function F, is defined by 

 
 
1

( ; )
1

p

D F
w


 

x
x X

 (14) 

where   denotes expected value, w  is a suitable weight function on [0, ), and 
p

  

denotes the pL  norm. We assume that w  is non-decreasing and continuous on [0, )  

with ( ) ,w     and for , da b  satisfies ( ) ( ) ( ).w a b w a w b    Furthermore, 

in the role of the weight function we use ( ) , , 0.w x a bx a b    The empirical ver-

sion of the weighted pL  depth function is obtained by replacing the distribution func-

tion F  of X  in ( ) ( ) ( )
p p

w w x t dF t  x X  by its empirical counterpart calcu-

lated from the sample 1{ , ..., }n
nX x x  

  
1

1

1
( , ) 1

n
n

i p
i

D w
n





     
z X z x  (15) 

A point for which the depth takes its maximum is called the pL  median (multivar-
iate location estimator), the set of points for which the depth takes a value not smaller 
than [0, 1]   is the multivariate analogue of the quantile and is called the -central 

region, ( ) { : ( , ) }.dD F D F   x x  

Theoretical properties of this depth were obtained by Zuo in [28]. The weighted Lp 
depth function at a point has a low breakdown point (BP) and unbounded influence 
function (IF) but on the other hand, the medians based on the weighted Lp depth (mul-
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tivariate location estimator) are globally robust with the highest BP for any reasonable 
estimator. The weighted pL  medians are also locally robust with bounded influence 
functions for suitable weight functions. A low BP and unbounded IF at a point and 
a high BP of an estimator of centrality seems to be especially desirable for DSA. For 
example, a projection depth with high BP and bounded IF performs worse than the Lp 
depth in the DSA. Unlike other depth functions and multivariate medians, the 
weighted pL  depth and medians are easy to calculate in high dimensions. The price 
for this advantage is the lack of affine invariance of both the weighted pL  depth and 
medians. The complexity of calculating the weighted pL  depth is 2 2( )O d n n d  and 

parallel computing procedures may be used [28]. 
For any (0, 1]   we can define the smallest depth region bigger or equal to  

 
( )

( ) ( )
A

R F D F


 

   (16) 

where   ( ) 0 : ( ) .A P D F      

Figures 9 and 10 present a sample L2 depth contour plot and L2 sample depth per-
spective plot, respectively, obtained using our DepthProc R package. 

 

 Fig. 9. Sample L2 contour plot.  
Source: DepthProc R package 

Fig. 10. Sample L2 perspective plot 
 Source: DepthProc R package 
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Fig. 11. Sample DD-plot – location differences. 
Source: DepthProc R package 

Fig. 12. Sample DD-plot – scale differences. 
Source: DepthProc R package 

For two probability distributions F  and G, both in ,d  we can define a depth vs. 
depth plot, which is a very useful generalization of the one dimensional quantile- 
-quantile plot: 

   ( , ) ( , ), ( , ) , dDD F G D F D G z z z   (17) 

Its sample counterpart, calculated for two samples 1{ , ..., }n
nX X X  from F  and 

1{ , ..., }m
mY Y Y  from G, is defined as 

   ( , ) ( , ), ( , ) ,   { }n m
n m n mDD F G D F D G  z z z X Y  (18) 

A detailed presentation of the DD-plot can be found in [18] or [16]. Figure 11 pre-
sents a DD-plot with a heart-shaped pattern characteristic of differences in location 
between two samples, whereas Fig. 12 presents a moon-shaped pattern typical of scale 
differences between samples. Applications of DD-plots and theoretical properties of 
statistical procedures using this plot can be found in [18] and [29]. 

Having two samples nX  and mY  and using any depth function, we can compute 
depth values for the combined sample n mZ  = ,n mX Y  assuming the empirical dis-
tribution is calculated based on all observations, or only on observations belonging to 
one of the samples nX  or .mY  For example, if we observe lX s  that depths are more 

likely to cluster tightly around the center of the combined sample, while lY s  depths 

are more likely to occupy outlying positions, then we conclude that mY  was drawn 
from a distribution with a larger scale. 

Properties of DD-plot based statistics in the i.i.d. setting were studied in [18]. The 
authors proposed several DD-plot based statistics and presented bootstrap arguments 
for their consistency and high effectiveness in comparison to Hotelling 2T  and multi-
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variate analogues of Ansari–Bradley and Tukey–Siegel statistics. The depth based 
multivariate Wilcoxon rank sum test is especially useful for the detection of multivari-
ate scale changes and was studied among other in [18]. 

For the samples 1 1{ , ..., }, { , ..., },m n
m n X X X Y Y Y  and a combined sample 

n m Z X Y  the Wilcoxon statistic is defined as 

 
1

m

i
i

S R


   (19) 

where iR  denotes the rank of the i-th observation of 1, ., ..,m i mX  in the combined 

sample 

 ( ) # : ( , ) ( , ) , 1, ...,l j j lR D D l m   x z Z z Z x Z  

The distribution of S  is symmetric about ( ) 1 / 2 ( + 1)E S m m n  , its variance is 
2 ( ) 1/12 ( 1).D S mn m n    For the asymptotic distributions of depth based multivar-

iate Wilcoxon rank-sum test statistics under the null and general alternative hypothe-
ses and theoretical properties of such statistics see [29]. Note that using a DD-plot 
object (implemented in the DepthProc R package), it is easy to calculate other multi-
variate generalizations of rank test statistics involving, e.g. Haga or Kamat statistics 
(more sensitive to change in regime) and apply them to the robust monitoring of cer-
tain especially interesting features of multivariate time series. 

5. Proposals 

Let ( , )Y X  with , dy x   be a random vector with joint density ( , )f y x  and 

marginal density of X ( ),Xf x  then the conditional density ( | )g Y X x ( , )/ ( )Xf y f x x  

can be estimated by inserting a kernel density, local polynomial or k-nearest neighbors 
density estimator in both the nominator and denominator of ( | ).g y x In the context of 

DSA, X  denotes a vector of lagged values of a phenomenon Y. In this case, ( | )g  x  

determines the so called predictive distribution of Y, given X x  represents the past. 
Let us recall that binning is a popular method enabling faster computation by re-

ducing the continuous sample space to a discrete grid [26]). It is useful, for example in 
the case of estimating a predictive distribution by means of kernel methods. To bin 
a window of n points  , 1, ...,i n i n iW X X   into a grid 1, ... ,, mX X  we simply assign 

each sample point iX  to the nearest grid point .jX   When binning is completed, each 
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grid point jX   has an associated number ,ic  which is the frequency of the points that 

have been assigned to .jX   This procedure replaces the data  , 1 , ...,i n i n iW X X   

with the smaller set  , 1 , ..., .j m j m jW X X     Although simple binning can speed up 

computation, it has been criticized for a lack of a precise control over the accuracy of 
the approximation. Robust binning however retains the properties of the majority of 
the data and decreases the computational complexity of the DSA at the same time. 

For a 1D window , ,i nW  let ,i n kZ   denote a 2D window created from ,i nW  consist-

ing of n – k pairs of observations and k lagged observations ,i n kZ  = 1( , ) ,i n k i nX X     

1 .i n k    
Further, it is sufficient to consider the simplest case 1k  . Assume that we ana-

lyze a data stream { }tX  using a moving window of fixed length n, i.e., ,i nW  and the 

derivative window , 1.i nZ   In the first step, we calculate the weighted sample pL  depth 

for , .i nW Next we choose an equally spaced grid of points 1, ..., ml l  in such a way that 

1 1[ , ] [ , ]m ml l l l  covers a fraction  of the central points of , 1i nZ   w.r.t. the calculated 
pL  depth, i.e., it covers , 1( )i nR Z

  for a given pre-set threshold (0, 1).   For both 

tX  and 1,tX   we perform a simple binning procedure using the following bins: 

1 1 2( , ), ( , ), ..., ( , ).ml l l l   For robust binning, we omit the “extreme” classes and use 

only the midpoints and bin frequencies for the classes 1 2 2 3 1( , ), ( , ), ..., ( , ).m ml l l l l l  

Figures 13 and 14 present the idea of simple 2L  binning in the case of data generated 
from a mixture of two two-dimensional normal distributions. The midpoints are repre-
sented by triangles. 

  

Fig. 13. The first step in Lp depth binning.  
Source: DepthProc R package 

Fig. 14. The second step in Lp depth binning. 
Source: DepthProc R package 

Although Hyndman and Yao [11, 12] considered a situation in which data were 
available in the form of a strictly stationary stochastic process {( , )}i iX Y  where iY  

and iX  are scalars, their estimators perform very well in the case of a local DSA as 
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well. For the DSA, iX  typically denotes a k  lagged value of .iY  Let ( | )g y x  be the 

conditional density of iY  given .iX x  We are interested in robust estimation of 

( | )g y x  from the data {( , ), 1 }.l lX Y l n   

In our opinion, the best solution is a combination of robust binning and nonpara-
metric estimation of the conditional density using the second proposal of Hyndman 
and Yao from [11], which they call a constrained local polynomial estimator. 

Let 

 

2
1

1 0

1
( , , ) ( ) ( ) ( )

m r
y j x x
hy i j i hx i ixy

i j

R x y K Y y X x K X x b
B






 

 
       

 
 θ  (20) 

where 
1

1

,
m

xy y
j

j

B b




  y
jb  being the “marginal” bin frequencies for , , ,jiYY X   denote the 

midpoints for the binned data , 1, ..., ( 1)i j m  , and x
ib   denotes the frequency of y  

under the condition that its x-component belongs to the same bin as .x Then 

 0̂ˆ ( | )g y x   (21) 

is a local r-th order polynomial estimator, where  0 1
ˆ ˆ ˆˆ , , ...,

T

xy r  θ  is that value of  

which minimizes ( , , ).R x yθ  Note that binning preserves properties of the constrained 

local polynomial estimator. 
The estimator (21) uses two smoothing parameters: hx controls the smoothness of 

conditional densities in the x  direction and hy controls the smoothness of each condi-
tional density in the y direction. Effective (but computationally intensive) methods of 
the bandwidth selection were described in [11] and [12]. However, in the context of 
online analysis, we propose using a certain robust rule of thumb [26]. While estimator 
(21) has some nice properties, such as a smaller bias than the “classical” Nadaraya 
–Watson kernel density estimator when 0,r   it is not constrained to be non-negative 
and does not integrate to 1, except in the special case 0.r  For obtaining the non-
negativity, Hyndman and Yao proposed the setting 

 *
0 0

ˆ ( )l   (22) 

where ( ) exp( ).l u u  
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The improved in this way estimator (22) considered jointly with the robust 
weighted pL  binning seems to be the best for the purposes of DSA. In our opinion, it 
is enough to use polynomials of degree 1, 2r  . 

Proposal 1. Assume we analyze a stream { }tX  using a moving window of fixed 

length n, i.e., ,i nW  and the derivative window , 1i nZ  . In the first step, we calculate the 

weighted sample 2L  depth for , .i nW  Next, we choose an equally spaced grid of points 

1, ..., ml l  in such way that 1 1[ , ] [ , ]m ml l l l  covers a fraction   of the central points of 

, 1i nZ   w.r.t. the calculated 2L  depth, i.e., it covers , 1( )i nR Z
  for a certain pre-set 

threshold (0, 1).   For both tX  and 1tX   we perform a simple binning procedure 

using the following bins: 1 1 2( , ), ( , ), ..., ( , ).ml l l l   In the next step, we omit the 

“extreme” classes and to estimate the predictive distribution density function by 
means of (22) we use only the midpoints and binned frequencies for the classes 

1 2( , ),l l 2 3( , )l l , ..., 1( , ).m ml l  For monitoring the PD of the stream, we use a minimum 

distance statistic of the form (13) using the Hellinger distance. We use bootstrap criti-
cal values based on the reference samples for making an intervention into the stream 
(or theoretical values when the reference densities are known). 

The parameter m determines the degree of a “sparsity” of the binning and mainly 
relates to the window length and the computational complexity. We propose to take m 
from 50 to 100 for windows of the length of 1000–10 000 observations. 

Note that L2 depth is locally sensitive to outliers but, it gives very robust estima-
tors of centrality. We obtain a robust “support” for the binning which rejects outliers 
but stays sensitive to regime changes. This proposal protects us against outliers but 
using the nearest neighbors bandwidth selection rule (e.g., offered by the locfit 
R package [26]), we can control the influence of inliers as well. Note that it is possible 
to propose a local robust binning using an idea of local depth introduced in [21] and 
implemented in DepthProc [14] – this approach protects us against inliers. 

Proposal 2. Assume we analyze a multivariate stream { }tX  using a moving win-

dow of fixed length n, i.e., , .i nW  To monitor the unconditional distribution of the 

stream, we calculate moving multivariate Wilcoxon statistics of the form (19) using 
L2 depth and w.r.t. a fixed set of reference densities or samples. We use bootstrap crit-
ical values obtained w.r.t. reference samples do decide whether to make an interven-
tion into the stream (or theoretical critical values in the case of known theoretical den-
sities). 
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6. Properties of the proposals 

It is worth noting several conceptual difficulties concerning understanding the ro-
bustness of a nonparametric estimator of a probability distribution. For example, if 
data are generated by a mixture of distributions, then a kernel density estimator tends 
to describe all the parts of the mixture, which could be treated as an advantage or dis-
advantage depending on one’s point of view. In the DSA, using a “majority voting” 
rule, we focus our attention on the pattern represented by a majority of observations in 
the sample. This majority, however, can be defined by means of some global (protec-
tion against outliers) or local (protection against inliers) centrality measure [21]. 

To assess a breakdown of density estimator, we can take its unacceptable bias or 
variability at a fixed point, or use a given global measure, such as integrated mean 
squared error. 

From a practical point of view, it is useful to evaluate the robustness of a density 
estimator in terms of the decision, for which it provides a basis. Our procedure breaks 
down, if it leads to only one decision, despite a continuum of possible samples and the 
possibility of multiple, regimes of the data stream [5]. 

The quality of monitoring proposal 1 crucially depends on the quality of the densi-
ty estimator used within the proposal. In order to assess performance of this proposal, 
we generated 500 samples of 1 000 000 observations from several models of data 
streams having a strong practical justification. We estimated the CD based on win-
dows of a fixed length of 500–50 000 observations and considered samples without 
outliers and with up to 50% of additive outliers (AO) or inliers (IO) [19] for the defini-
tions). We considered several CHARME schemes including one consist of two AR(1)- 
-GARCH(1,1) sub-models 

 2 2 2
1 1 15 0.1 , , 1 0.1 0.75t t t t t t t tX X Z X              (23) 

 2 2 2
1 1 110 0.1 , , 1 0.1 0.75t t t t t t t tY Y Z Y              (24) 

where the innovations t come from a skewed Student distribution with 4 degrees of 

freedom, a skewed normal distribution, or skewed GED distribution (the default set-
tings for the conditional distributions within the fGarch R package). 

Our simulations also involved a CHARME scheme consisting of two SETAR 
models defined by 

 1 1
1

1 1

1 0.9 3

5 0.9

,

3,
t t t

t
t t t

X X
X

X X




 


 

  
    

 (25) 
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 

  
    

 (26) 

where the errors t  were i.i.d. from the Student distribution with 3 degrees of free-

dom. 
We estimated the densities of the CD { }tX  (Y) under the condition { }t k lX a   

(X) for an equally spaced grid of 500 points from the interval [Med(sim) – Ax 
MAD(sim), Med(sim) + AxMAD(sim)], where Med(sim) and MAD(sim) are robust 
estimators of location and dispersion for the simulated trajectory based on, 20 equally 
spaced points la  representing the local conditions. 

For each of the X values we condition on, we estimated the PD by means of pro-
posal 1 and by means of the binned kernel density estimator (KERN) offered within 
KernSmooth package (a direct plug-in approach for bandwidth selection) package and 
by means of the default estimator offered by {hdrcde} – i.e., estimator (22) without 
binning (deg = 1, link = log, method = 1, bandwidth selection = AIC) (LOCPOL). 

 
Fig. 15. Sample trajectories from CHARME 

models used in simulations 
Fig. 16. Windows consisted of points  

from two regimes of the CHARME models 

For each of the values of X we condition on and for each consecutive time point, we 
calculated discrepancy measures between the estimated density and the known density 
(reference density) from the model used within the simulations at the time point: 

  
,1 ,

1

ˆ ˆ( , ) MED ( ( | ), ( | ))
T

i N

W

n
i i

i n H W
l

l l
i n

R g W d g y X a f y X a
 

    (27) 
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,2 ,

1

ˆ ˆ( , ) ( ( | ), ( ))
T

i n

W

n
i i

i n H W
i n

R g W d g y X x f y
 

   (28) 

where Wn  denotes the window length, Tn  – the number of considered time points, l – the 

index of the X value which is being conditioned on, Hd   the sum of absolute deviations 

between densities at the evaluation points ˆH l l
l

d g f  , 
,

ˆ
i n

i
Wg  – estimated density, if  

– true density, MED – the median. 
We considered data generating schemes differing w.r.t. the transition matrix of the 

CHARME. 

Table 1. Performance of the KERN, LOCPOL, and PROP 1 estimators  
for windows consisting of 1000 observations  

generated from the sub-models defined by (27) and (28) 

2×SETAR  KERN   LOCPOL   PROP 1  

 10% sub1–90% sub2   9.41   9.29   7.29  
 20% sub1–80% sub2   7.67   8.32   6.60  
 30% sub1–70% sub2  10.11   10.63   8.61  
 40% sub1–60% sub2  11.27   10.89   7.75  
 10%–90% + 5% AO  5.44   5.35   4.29  
 20%–80% + 5% AO   10.99   10.60   8.56  
 30%–70% + 5% AO  12.52   12.1   10.88  
 40%–60% + 5% AO  6.33   6.22   5.00  
 10%–90% + 10% AO  4.56   4.47   3.73  
 20%–80% + 10% AO  9.78   10.31   7.75  
 30%–70% + 10% AO  10.84   10.68   8.65  
 40%–60% + 10% AO  8.38   8.27   6.34  

The table consists of the mean values of dH from 100 repeti-
tions. Source: Our own calculations, DepthProc package. 

 
Table 1 presents averaged sums of absolute deviations dH between the true CD 

distribution for various models for generating the data with a set proportion of outliers 
(varying from 0 to 10%) and selected estimators of the conditional density: the KERN, 
the LOCPOL and proposal 1 (PROP 1) for windows consisting of 10 000 observations 
generated from the CHARME model consisting of two AR(1)-GARCH(1,1) sub-
models defined by (23) and (24). We only conditioned on one X value. The parameters 
used for proposal 1 were fixed as m = 200,  = 0.05. We considered windows consist-
ing of 10–40% observations from the first sub-model and the rest from the second sub-
model. The windows consisted of up to 45% of outliers and inliers generated from 
a mixture of 7 normal distributions, where six of them had supports concentrated in 



Data streams induced by depth functions 75

the central part of the unconditional CHARME distribution and one of them had a ten 
times larger variance than the variance of the simulated data.  

Table 2 presents analogous results to Table 1 in the case of the CHARME model 
consisting of two SETAR sub-models defined by (25) and (26). 

Table 2. Performance of the KERN, LOCPOL,  
and PROP 1 estimators for windows consisting of 1000 observations  

generated from the sub-models defined by (25) and (26) 

2×AR-GARCH  KERN   LOCPOL   PROP 1  

 10% sub1–90% sub2   3.28   3.69   3.48  
 20% sub1–80% sub2   7.99   7.97   6.11  
 30% sub1–70% sub2  14.97   15.59   13.14  
 40% sub1–60% sub2  24.37   25.09   23.39  
 10%–90% + 5% AO  4.13   6.58   5.26  
 20%–80% + 5% AO   5.69   5.68   5.25  
 30%–70% + 5% AO  7.16   7.17   6.8  
 40%–60% + 5% AO  13.39   13.07   12.12  
 10%–90% + 10% AO  3.94   4.97   4.55  
 20%–80% + 10% AO  4.01   4.00  3.79  
 30%–70% + 10% AO  6.56   6.57   6.32  
 40%–60% + 10% AO  8.18   8.19   8.01  

The table consists of the mean values of dH from 100 repeti-
tions. Source: Our own calculations, DepthProc package. 

Although we observed a relatively high dispersion of the simulated discrepancy 
measures – the general tendency is in favor of our proposal. The high quality of our 
proposals starts to be evident with outlier fraction exceeding 10%. The behavior of the 
proposals based on the whole of the simulated trajectories using criteria (27) and (28) 
was also very good. However, since the quality of the density estimator is of prime 
importance for monitoring proposal 1, we studied the small sample behavior of statis-
tic (11) for the Hellinger and Kolmogorov distances (see [25] for properties of this 
statistic) and the CD density estimator with robust binning. The simulation studies 
were at least very promising for our proposal in comparison to other parametric, as 
well nonparametric, density estimators. 

The estimated computational time for a window consisting of computation for 
window consisted of 1 000 observations was 1.46 s for binned kernel KERN, 3.8 s for 
LOC and 0.84 s for PROP 1. For a window consisting of 10 000 observations, we 
observed a computational time 1.34 s for binned KERN, 3 min 34 s for LOC, and 
1 min 47 s for PROP 1. We used the KernSmooth R package for kernel estimation, the 
hdrcde package for the constrained local estimator, and implemented proposal 2 (bin-
ningDepth2D within the DepthProc) with 100×100 binning. 
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Proposal 2 is mainly adapted to monitoring multivariate data streams. To check its 
properties, we studied several simulation schemes involving CHARME models con-
sisting of vector autoregressive models (VARs) and multivariate GARCH models. We 
studied the behavior of statistic (21), as well as the usefulness of the moving DD-plot. 
The results of the small sample studies were very promising. Figure 17 presents 5-min 
quotations for 5 stocks belonging to the Dow Jones Industrial Index in the period from 
2008-03 to 2013-03. Figure 18 presents the first differences for these quotations. 
Fig. 19 presents an application to the time series from Fig. 17, the moving multivariate 
Wilcoxon statistic (19) calculated from 100-element window with the reference sam-
ple taken to be the first 100 observations. 

Figure 20 presents an analogous situation but the Wilcoxon statistics is applied to 
the time series from Fig. 18. Horizontal lines in Figs. 19, 20 present certain threshold 
fixed by analyst for intervention purposes. It is easy to notice that proposal 2 helps us 
in detecting a change trend or a scale change in within the multidimensional stream. 
Additionally, intensive simulation studies confirm the clear merits of moving DD-plot 
based statistics in the context of DSA monitoring. Note that both proposals are robust 
to a small fraction of outliers and they are sensitive to regime changes at the same 
time. A full description of the results of the simulation may be found in [17]. 

 

Fig. 17. 5-min quotations for stocks  
from DJ Ind. Source: Our own calculations 

Fig. 18. First differences 5-min quotations for stocks 
from DJ Ind. Source: Our own calculations 
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Fig. 19. Moving Wilcoxon statistics  
from 250 observation window, 5-min quotations

for stocks from DW Ind. 
Source: DepthProc R package 

Fig. 20. Moving Wilcoxon statistics 
from 250 observation window, first differences  
of 5-min quotations for stocks from DW Ind. 

Source: DepthProc R Package 

7. Conclusions 

Two robust procedures have been presented adapted to the analysis of streaming 
data. These procedures behave very well in cases of data which have a moderate frac-
tion of outliers in comparison to procedures based on classical approaches to statistical 
inference. The R implementation of the proposals is completely freely available on 
CRAN servers in the DepthProc R package. These procedures are still being devel-
oped in the context of the possibilities of distributed and and/or recursive inference 
online. For robust procedures, this is problem of prime importance, unsolved as far, 
particularly in the multivariate case. Certain proposals in this matter can be found in 
[13] and [17].  
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