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APPLICATION OF THE REPRESENTATIONS OF  
SYMMETRIC GROUPS TO CHARACTERIZE SOLUTIONS OF 

GAMES IN PARTITION FUNCTION FORM 

A different perspective from the more “traditional” approaches to studying solutions of games in 
partition function form has been presented. We provide a decomposition of the space of such games 
under the action of the symmetric group, for the cases with three and four players. In particular, we 
identify all the irreducible subspaces that are relevant to the study of linear symmetric solutions. We 
then use such a decomposition to derive a characterization of the class of linear and symmetric 
solutions, as well as of the class of linear, symmetric and efficient solutions. 
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1. Introduction 

The problem of distributing the surplus generated by a collection of people who 
are willing to cooperate with one another is well captured by cooperative game theory. 
It is assumed that a game is characterized by giving the value of each possible 
coalition from a set of players. Several models describe the value of a coalition by 
means of a real valued characteristic function, which is defined on the set of all 
subsets of the set of players. However, in the case of an economy with externalities, 
one cannot easily recommend a distribution of the joint gains, as it depends on the 
organizational structure which has been formed. In this context, Lucas and Thrall [8] 
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introduced a new formulation for the theory of cooperative games in terms of partition 
functions. They assumed that players divide into coalitions, forming a partition of the 
set of players. According to this model, a partition function assigns a value to each 
pair consisting of a coalition and a partition which includes that coalition. The 
advantage of this model is that it takes into account both internal factors (a coalition 
itself) and external factors (the coalition structure) that may affect cooperation 
outcomes and allows us to analyze cooperation problems more deeply. 

There have been many papers dealing with solutions of games in partition function 
form. The first author that proposed a concept for the value of this type of game was 
Myerson [10], and then Bolger [20] derived a class of linear, symmetric and efficient 
values for games in partition function form. More recently, Albizuri et al. [1], Macho- 
-Stadler [9], Ju [7], Pham Do and Norde [11], and De Clippel and Serrano [3] apply an 
axiomatic approach to find a value. 

In this paper, linear symmetric solutions of games in partition function form have 
been studied for the cases of three and four players with the innovative use of basic 
representation theory to describe the group of permutations of the set of players 
presenting a different perspective from the more “traditional” approaches. 

Very roughly speaking, representation theory is a general tool for studying 
abstract algebraic structures by representing their elements as linear transformations of 
vector spaces. This is useful, since every permutation may be thought of as a linear 
map2 which presents the information in a more clear and concise way. It is a beautiful 
mathematical subject which has many applications, ranging from the number theory 
and combinatorics to geometry, probability theory, quantum mechanics and quantum 
field theory. It was recently used by Hernández-Lamoneda et al. [5] to study solutions 
of games in characteristic function form, where they propose representation theory as 
a natural tool for research in cooperative game theory. 

Briefly, what we do is to derive a direct sum decomposition of the space of games 
in partition function form and the space of payoffs into “elementary pieces”. 
According to this decomposition, any linear symmetric solution, when restricted to 
any such elementary piece, is either zero or a multiple of a single scalar. Therefore, all 
linear symmetric solutions may be written as a sum of trivial maps. 

Having a global description of all linear and symmetric solutions, it is easy to 
understand the restrictions imposed by the efficiency axiom. We then use such 
a decomposition to provide, in a very economical way, a characterization of the class 
of linear symmetric solutions and a general expression for all linear, symmetric and 
efficient solutions. 

The paper is organized as follows. In the next section, we first recall the main 
basic features of games in partition function form. A decomposition of the space of 

 _________________________  
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three player games in partition function form is introduced in Section 3. In the same 
section, we show an application of this decomposition by giving characterizations of 
linear symmetric solutions. In Section 4, we discuss the decomposition for the case of 
four player games and Section 5 concludes the paper. Long proofs are presented in the 
Appendix. 

To finish this introduction, we give a comment on the methods employed in this 
paper. Although it is true that the characterization results could be proved without any 
explicit mention of basic representation theory with regard to symmetric groups, we 
feel that by doing that we would be withholding valuable information from the reader. 
This algebraic tool, we believe, sheds new light on the structure of the space of games 
in partition function form and their solutions. Part of the purpose of the present paper 
is to share this viewpoint with the reader. 

To make the paper as self contained as possible, we have included an Appendix 
with some facts we need regarding basic representation theory. 

2. Framework and notation 

In this section, we give some concepts and notation related to n-person games in 
partition function form, as well as a brief subsection containing preliminaries related 
to integer partitions, since they are a key subject in subsequent derivations. 

2.1. Games in partition function form 

Let = {1, 2, ..., }N n  be a fixed nonempty finite set, and let the members of N be 
interpreted as players in some game. Given 0N, let CL be the set of all coalitions 
(nonempty subsets) of ,N = { | , } = 2 \ { }.NCL S S N S⊆ ≠ ∅ ∅  Let PT be the set of 
partitions of N, so 

1 2 =1
{ , , ..., } iff = , , =

m

m i j j ki
S S S PT S N S j S S j k∈ ∪ ≠ ∅ ∀ ∩ ∅∀ ≠  

Also, let = {( , ) | }ECL S Q S Q PT∈ ∈  be the set of embedded coalitions, that is 
the set of coalitions together with specifications as to how the other players are 
aligned. 

For the sake of concision, we often denote by SQ the embedded coalition (S, Q), 
and omit braces and commas in the description of subsets (for example: 12{12, 3}  
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instead of ({1, 2}, {{1, 2}, {3})). Additionally, we will denote the cardinality of a set 
by its corresponding lower-case letter, for instance = ,n N  = ,s S  = .q Q  

Definition 1. A mapping 

:w ECL →R  

that assigns a real value, ( , ),w S Q  to each embedded coalition ( , )S Q  is called a game 
in partition function form. The set of games in partition function form with player 
set N is denoted by G, i.e., 

( )= = { | : }nG G w w ECL → R  

The value ( , )w S Q  represents the payoff of coalition S, given that the coalition 
structure Q forms. In this kind of game, the value of some coalition depends not only 
on what the players of such a coalition can jointly obtain, but also on the way in which 
the other players are organized. We assume that, in any game situation, the universal 
coalition N (embedded in {N}) will actually form, so that the players will have 

( ,{ })w N N  to divide among themselves. But we also anticipate that the actual 
allocation of this value will depend on all the other potential values w(S, Q), as they 
influence the relative bargaining strengths of the players. 

Given 1 2,w w G∈  and ,c ∈R  we define the sum 1 2w w+  and the product 1cw , in 
G, in the usual way, i.e. 

1 2 1 2 1 1( )( , ) = ( , ) ( , ) and ( )( , ) = ( , )w w S Q w S Q w S Q cw S Q cw S Q+ +  

respectively. It is easy to verify that with these operations G is a vector space. 
A solution is a function : .nGϕ → R  If ϕ  is a solution and ,w G∈  then we can 

interpret ϕi(w) as the payoff which player i should expect from the game w. 
Now, the group of permutations of N, = { : |nS N Nθ θ→  is bijective}, acts on CL 

and on ECL in the natural way; i.e., for θ ∈ Sn: 

( ) = { ( ) | }S i i Sθ θ ∈  

1 1 2 1 1 2( , { , , ..., }) = ( ( ), { ( ), ( ), ..., ( )})l lS S S S S S S Sθ θ θ θ θ  

Also, Sn acts on the space of payoff vectors, :nR   

1 2 (1) (2) ( )( , , ..., ) = ( , , ..., )n nx x x x x xθ θ θθ  
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Next, we define the usual linearity, symmetry and efficiency axioms, which 
solutions are required to satisfy in the framework of cooperative game theory. 

Axiom 1. Linearity. The solution ϕ is linear if 1 2 1 2( ) = ( ) ( )w w w wϕ ϕ ϕ+ +  and 

1 1( ) = ( ),cw c wϕ ϕ for all 1 2,w w G∈  and .c∈R  

Axiom 2. Symmetry. The solution ϕ is said to be symmetric if and only if 
( ) = ( )w wϕ θ θϕ  for every nSθ ∈  and ,w G∈  where the game wθ  is defined as 

1( )( , ) = [ ( , )]w S Q w S Qθ θ −  

Axiom 3. Efficiency. The solution ϕ is efficient if ( ) = ( , { })i
i N

w w N Nϕ
∈
∑  for all 

.w G∈  
Myerson [10] proceeds axiomatically and proposes a value that extends the well 

known Shapley value [12] which is defined for TU games. His proposal satisfies the 
axioms of linearity, symmetry, efficiency and the “null” player property that states that 
players who have no effect on the outcome should neither receive nor pay anything. 

The Myerson value of a player is given by 

1

( , ) \{ },

1 1( ) = ( 1) ( 1)! ( , )
( 1)( )

q
i

S Q ECL T Q S i T
w q w S Q

n q n t
ψ −

∈ ∈ ∉

⎛ ⎞
− − −⎜ ⎟− −⎝ ⎠

∑ ∑  

2.2. Integer partitions 

A partition of a nonnegative integer is a way of expressing it as an unordered sum 
of other positive integers, and it is often written in tuple notation. Formally: 

Definition 2. 1 2= [ , , ..., ]lλ λ λ λ  is a partition of n iff 1 2, , ..., lλ λ λ  are positive 
integers and 1 2 = .l nλ λ λ+ + +  Two partitions which only differ in the order of 
their elements are considered to be the same partition. 

The set of all partitions of n will be denoted by ( )nΠ , and, if ( ),nλ Π∈  λ  is 
the number of elements of λ. 

For example, the partitions of n = 4 are [1, 1, 1, 1],  [2, 1, 1],  [2, 2],  [3,1],  and [4].  
Sometimes we will abbreviate this notation by dropping the commas, so [2,1,1]  
becomes [211] . 
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If ,Q PT∈  there is a unique partition ( ),Q nλ Π∈  associated with Q, where the 
elements of Qλ  are exactly the cardinalities of the elements of Q. In other words, if 

1 2= { , , ..., } ,mQ S S S PT∈  then 1 2= [ , , ..., ].Q ms s sλ  

For a given ( ),nλ Π∈  we represent by λ  the set of numbers determined by the 

iλ  and for ,k λ∈  we denote by mk the multiplicity of k in the partition λ. So, if 

= [4, 2, 2, 1, 1, 1]λ , then = {1, 2, 4}λ  and 1 = 3,m  2 = 2,m  4 = 1m . 

3. Representations 

Precise definitions and some proofs for this section may be found in the Appendix 
at the end of the paper. Nevertheless, for the sake of easier reading, we repeat a few 
definitions here, sometimes in a less rigorous but more accessible, manner. 

The group Sn acts naturally on the space of games in partition function form, G, 
via linear transformations (i.e., G is a representation of Sn). That is to say, each 
permutation nSθ ∈  corresponds to a linear, invertible transformation, which we still 
call θ, of the vector space G, namely 

1( )( , ) = [ ( , )]w S Q w S Qθ θ −  

for every ,nSθ ∈  w G∈  and ( , ) .S Q ECL∈  
Moreover, this assignment preserves multiplication (i.e., is a group homo- 

morphism) in the sense that the linear map corresponding to the product of the two 
permutations 1 2θ θ  is the product (or composition) of the maps corresponding to 1θ  
and 2θ , in that order. 

Similarly, the space of payoff vectors, ,nR  is a representation of Sn: 

1 2 (1) (2) ( )( , , ..., ) = ( , , ..., )n nx x x x x xθ θ θθ  

Definition 3. Let 1X  and 2X  be two representations of the group Sn. A linear map 

1 2:T X X→  is said to be Sn equivariant if ( ) = ( ),T x T xθ θ  for every nSθ ∈  and every 

1.x X∈  

Remark 1. Notice that, in the language of representation theory, what we call 
a linear symmetric solution is a linear map : nGϕ → R  that is Sn equivariant. 
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3.1. Decomposition of (3)G  

Definition 4. Let Y be a subspace of the vector space X. 
• Y is invariant (with respect to the action of Sn) if for every y Y∈  and every 

,nSθ ∈  we have 

y Yθ ∈  

• Y is irreducible if Y itself has no invariant subspaces other than {0} and Y itself. 

We begin with the decomposition of nR  into irreducible representations which is 
easier, and then proceed to do the same thing for G. That is to say, we wish to write 

nR  as a direct sum of subspaces, each invariant with respect to all permutations in Sn, 
in such way that the summands cannot be further decomposed (i.e., they are irredu- 
cible). 

For this, set = (1, 1, ..., 1) n∈1 R  and 

{ }= and = | = 0n
n nU V z z∈ ⋅1 1R

 

The spaces Un and Vn are usually called the “trivial” and “standard” repre- 
sentations, respectively. Notice that Un is a trivial subspace in the sense that every 
permutation acts like the identity transformation. 

Every permutation fixes each element of Un, so, in particular, it is an invariant 
subspace of .nR  Being one dimensional, it is automatically irreducible. Its orthogonal 
complement, Un, consists of all vectors such that the sum of their coordinates is zero. 
Clearly, if we permute the coordinates of any such vector, its sum will still be zero. 
Hence, Vn is also an invariant subspace. 

Proposition 1. The decomposition of nR  under Sn into irreducible subspaces is: 

=n
n nU V⊕R  

Proof. First, it is clear that =n nU V∩ {0}3. We now prove that = .n
n nU V+R  

1. If ( ),n nz U V∈ +  then ,nz ∈R  since ( )n nU V+  is a subspace of .nR  

 _________________________  
3Here, 0 = {0, 0, …, 0 ∈  R n)  
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2. For ,nz ∈R let 
=1

1= .n
ii

z z
n∑  Note that z can be written as 

 1 2= ( , , ..., ) ( , , ..., )nz z z z z z z z z z+ − − −  

and so,  

( )n nz U V∈ +  

Finally, since Un is one dimensional, then it is irreducible. To check that Vn is also 
irreducible, an induction argument that can be found in Hernández-Lamoneda et al. [5] 
may be used. 

Thus, this result tells us that ,nR as a vector space with group of symmetry Sn, can 
be written as an orthogonal sum of the subspaces Un and Vn, which are invariant under 
permutations and cannot be further decomposed. 

The decomposition of G is carried out in three steps. For a given ( ),nλ Π∈ let 
= { | =QQ Q PTλ λ∈  }.λ  For each ( ),nλ Π∈  define the subspace of games 

= { | ( , ) = 0, if }G w G w S Q Q Qλ λ∈ ∉  

Thus, 

( )
=

n
G Gλλ Π∈

⊕  

whereas, for ,k λ∈  define the subspace 

= { | ( , ) = 0, if }kG w G w S Q S kλ λ∈ ≠  

Then each Gλ  has a decomposition = k

k
G Gλ λ

λ∈
⊕  and so we obtain the following 

decomposition of G: 

 
( ) ( )

= =k k

n nk
k

G G Gλ λλ Π λ Πλ
λ

∈ ∈∈
∈

⊕ ⊕ ⊕  (1) 

Each subspace kGλ  is invariant under Sn and the decomposition is orthogonal with 
respect to the invariant inner product on G given by 
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 1 2 1 2
( , )

, = ( , ) ( , )
S Q ECL

w w w S Q w S Q
∈
∑  

Here, invariance of the inner product means that each permutation nSθ ∈  is not 
only a linear map on G but an orthogonal map with respect to this inner product. 
Formally, 1 2 1 2, = ,w w w wθ θ  for every 1 2, .w w G∈  

Example 1. For the case = {1, 2, 3},N (3)dim = 10G  and it decomposes as 
follows: 

(3) 1 1 2 3
[1,1,1] [2,1] [2,1] [3]=G G G G G⊕ ⊕ ⊕  

The next goal is to get a decomposition of each subspace of games kGλ  into 
irreducible subspaces and hence obtain a decomposition of (3).G  

The following games play an important role in describing the decomposition of 
the space of three player games: 

1 if , =
( , ) =

0 otherwise
k Q Q S k

u S Q λ
λ

⎧ ∈
⎨
⎩

 

Notice that [ ] [ ]= .n n
n nG uR  

Also, for each ( ) \{[ ]},n nλ Π∈ k λ∈  and ;nz V∈  let ,k kz Gλ
λ∈  be given by 

,
if , =

( , ) =
0 otherwise

ik i S

z Q Q S k
z S Q

λλ ∈

⎧ ∈⎪
⎨
⎪⎩

∑
 

Definition 5. Suppose X1 and X2 are two representations of the group Sn, i.e., we have 
two vector spaces X1 and X2 where Sn acts using linear maps. We say that X1 and X2  
are isomorphic, if there is a linear map between them which is 1–1 and onto and 
commutes with the respective Sn actions. Formally, there is an invertible linear map 

1 2:T X X→  such that ( ) = ( )T x T xθ θ  for each nSθ ∈  and 1.x X∈  We then write 

1 2; .X X  
For our purposes, X1 will be an irreducible subspace of G and X2 an irreducible 

subspace of .nR  
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Isomorphic representations are essentially “equal”; not only are they spaces of the 
same dimension, but the actions equivalent under some linear invertible map between 
them. 

The next proposition provides us a decomposition of the space of three player 
games into irreducible subspaces. 

Proposition 2. For (3) \ {[3]},λ Π∈  

=k k kG U Vλ λ λ⊕  

where 3= ;k kU u Uλ λ  and { },
3 3= | ; .k kV z z V Vλ

λ ∈  The decomposition is orthogonal. 

(See proof in the Appendix). 

Remark 2. From the above Proposition, it is not difficult to verify that 

( , )
= ,

= | ( , ) = 0k k

S Q ECL
S k Q Q

V w G w S Qλ λ

λ
∈

∈

⎧ ⎫∈⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

∑  

Proposition 2 gives us a decomposition of the space of three player games that is 
a key ingredient in our subsequent analysis. 

Set 1 1 2 3
[1,1,1] [2,1] [2,1] [3]= .GU U U U U⊕ ⊕ ⊕  This is a subspace of games whose value on 

a given embedded coalition ( , ),S Q  depends only on the cardinality of S and on the 
structure of Q4. According to Proposition 12, UG is the largest subspace of (3)G  where 
S3 acts trivially5. Let 1 1 2

[1,1,1] [2,1] [2,1]= ,GV V V V⊕ ⊕ then 

GG VUG ⊕=(3)
 

Thus, given a game (3) ,w G∈  from the above we may decompose it as = ,w u v+  
where in turn ,= k

ku a uλ λ∑  and ,
,= .k
kv zλ

λ∑ This decomposition is very well suited to 
study the image of w under any linear symmetric solution. This results from the 
following version of Schur’s well known Lemma6. 

 
 _________________________  

4Such games may be thought of as a counterpart of symmetric games in TU games. 
5i.e., =w wθ  for each 3Sθ ∈  and .Gw U∈  
6See the Appendix for a precise statement of Schur’s theorem. 
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Theorem 1 (Schur’s Lemma). Any linear symmetric solution 

(3) 3
3 3: = =G GG U V U Vϕ ⊕ → ⊕R  

satisfies 
a) 3( ) ,GU Uϕ ⊂  
b) 3( ) .GV Vϕ ⊂  
Moreover, 
• for each (3)λ Π∈  and ,k λ∈  there is a constant ,kλα ∈R  such that, for each 

,ku Uλ∈  

, 3( ) = (1,1,1)ku Uλϕ α ∈  

• for each (3) \{[3]}λ Π∈  and ,k λ∈  there is a constant ,kλβ ∈R  such that, for 
each ,k kz Vλ

λ∈ , 

,
, 3( ) =k
kz z Vλ

λϕ β ∈  

For many purposes, it suffices to use merely the existence of the decomposition of 
the game (3) ,w G∈  without having to worry about the precise form of each component. 
Nevertheless, it will be useful to compute each component. Thus we give a formula for 
computing them. 

Proposition 3. Let (3).w G∈ Then 

 ,
, ,

(3) (3)\{[3]}
= k k

k k

k k

w a u zλ
λ λ λ

λ Π λ Π
λ λ

∈ ∈
∈ ∈

+∑ ∑  (2) 

where 
1) ,kaλ  is the average of the values ( , )w S Q  with Q Qλ∈  and =S k: 

{ }
( , )

, =
,

( , )

=
( , ) | , =

S Q ECL
Q Q S k

k

w S Q

a
S Q ECL Q Q S k

λ
λ

λ

∈
∈

∈ ∈

∑
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2) For each (3) \{[3]}λ Π∈  and :k λ∈  

, ,= ( 1) ( 1) ( )k kz k wλ
λ λλ ψ− −  

where ψ denotes Myerson’s value and ,kwλ  is the kGλ component of w (i.e., 

, ( , ) = ( , )kw S Q w S Qλ  if , = ,Q Q S kλ∈  and , ( , ) = 0kw S Qλ  otherwise). 

Proof. We start by computing the orthogonal projection of w onto UG. Notice that 
{ }kuλ  is an orthogonal basis for UG, and that  

{ }2
= ( , ) | , =ku S Q ECL Q Q S kλ λ∈ ∈  

Thus, the projection of w onto UG is 

(3)

,

,

k
k

k k

k

w u
u

u u
λ

λ
λ Π λ λ

λ
∈

∈

∑  

and thus 

{ }
( , )

, =
,

( , )
,

= =
, ( , ) | , =

S Q ECLk
Q Q S k

k k k

w S Q
w u

a
u u S Q ECL Q Q S k

λ λ
λ

λ λ λ

∈
∈

∈ ∈

∑
 

Now, for (3) \ {[3]},λ Π∈  let ,kwλ  be defined as above. It follows that  

,
, , ,= k k
k k kw a u zλ

λ λ λ λ+  

Applying Myerson’s value, we obtain 

( ) ( ),
, , , ,

1( ) = =
( 1) ( 1)

k k
k k k kw a u z z

k
λ

λ λ λ λ λλψ ψ ψ
λ

+
− −

 

because ( ) = 0kuλψ  for (3) \ {[3]}λ Π∈ from the assumption of efficiency.  ( ),
,
k
kzλ

λψ

, ,= k kzλ λβ  by Schur’s Lemma, and the precise value of ,
1=

( 1) ( 1)k kλ λβ
λ− −

 is easy to 

compute. 



Application of the representations of symmetric groups to characterize solutions of games 

 

109

Remark 3. The use of Myerson’s value in order to compute ,kzλ  is a matter of 
personal taste. One could use one’s own favorite linear symmetric solution – as long 
as it is non-zero on each kVλ  – to compute them. 

3.2. Applications 

Now we show how to get characterizations of solutions easily by using the 
decomposition of a game given by (2) in conjunction with Schur’s Lemma. We start 
by providing a characterization of all linear symmetric solutions (3) 3: Gϕ → R  in the 
following proposition: 

Proposition 4. Linear symmetric solutions (3) 3: Gϕ → R  are of the form 

 , ,
(3) ( , ) ( , )

, = , =

( ) = ( , ) ( , )i k k
S Q ECL S Q ECL
S i S k S i S kk

Q Q Q Q

w w S Q w S Qλ λ
λ Π

λ
λ λ

ϕ γ δ
∈ ∈ ∈

∋ ∋/∈
∈ ∈

⎡ ⎤+
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑ ∑ ∑  (3) 

for some real numbers  

{ } { }, ,| (3), | (3) \ {[3]},k kk kλ λγ λ Π λ δ λ Π λ∈ ∈ ∪ ∈ ∈  

Proof. Let (3) 3: Gϕ →R  be a linear symmetric solution. By the previous 
proposition, (3)w G∈  decomposes as 

,
, ,

(3) (3)\{[3]}
= k k

k k

k k

w a u zλ
λ λ λ

λ Π λ Π
λ λ

∈ ∈
∈ ∈

+∑ ∑  

Without loss of generality, we take i = 1, then 

( ) ( ),
1 , 1 1 ,

(3) (3) \{[3]}
( ) = k k

k k

k k

w a u zλ
λ λ λ

λ Π λ Π
λ λ

ϕ ϕ ϕ
∈ ∈

∈ ∈

+∑ ∑  

Now, from Schur’s Lemma and using Proposition 3 again, we have 
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( )

( )

1 , , , , 1
(3) (3)\{[3]}

, , 1 ,
(3) ( , ) (3) \{[3]}

, =

( ) =

= ( , )

k k k k

k k

'
k k k

S Q ECL
Q Q S kk k

w a z

w S Q w

λ λ λ λ
λ Π λ Π

λ λ

λ λ λ
λ Π λ Π

λ λλ

ϕ α β

α β ψ

∈ ∈
∈ ∈

∈ ∈ ∈
∈∈ ∈

+

′ +

∑ ∑

∑ ∑ ∑
 

where 

 
{ }

,
, =

( , ) | , =
k

k S Q ECL Q Q S k
λ

λ
λ

α
α′

∈ ∈
  

and  

, ,= ( 1) ( 1)k k kλ
λ λβ β λ′ − −   

Notice that 

1 [111], 1
1 1 1( ) = (1{1, 2, 3}) (2{1, 2, 3}) (3{1, 2, 3})
3 6 6

w w w wψ − + +  

1 [21], 1
2 1 1( ) = (1{1, 23}) (2{2, 13}) (3{3, 12})
3 3 3

w w w wψ − −  

1 [21], 2
1 1 1( ) = (12{3, 12}) (13{2, 13}) (23{1, 23}
6 6 3

w w w wψ + −  

Finally, set 

 111], 1 111], 1 111], 1
1= ,
3

γ α β′ ′−  21], 1 21], 1 21], 1
2= ,
3

γ α β′ ′+  21], 2 21],2 21],2
1= ,
6

γ α β′ ′+  3],3 3],3=γ α′ , 

111],1 111],1 111],1
1= ,
6

δ α β′ ′+  21],1 21], 1 21], 1
1= ,
3

δ α β′ ′−  and 21],2 21],2 21],2
1=
3

δ α β′ ′−   

Thus, 

1 , ,
(3) ( , ) ( , )

1, = 1, =

( ) = ( , ) ( , )k k
S Q ECL S Q ECL
S S k S S kk

Q Q Q Q

w w S Q w S Qλ λ
λ Π

λ
λ λ

ϕ γ δ
∈ ∈ ∈

∋ ∋/∈
∈ ∈

⎡ ⎤+
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑ ∑ ∑  

We should mention that a similar formula for linear and symmetric solutions of 
games in partition function form was obtained by Hernández-Lamoneda et al. [6]. 
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Corollary 1. The space of all linear and symmetric solutions on (3)G  has 
dimension 

{ } { }, ,| (3), | (3) \ {[3]}, = 7k kk kλ λγ λ Π λ δ λ Π λ∈ ∈ ∪ ∈ ∈  

Once we have such a global description of all linear symmetric solutions, we can 
understand restrictions imposed by other conditions or axioms, for example, the 
efficiency axiom. 

Proposition 5. Let (3) 3: Gϕ →R  be a linear symmetric solution. Then ϕ is 
efficient if and only if 

1) ( ) = 0k
i uλϕ , for all (3) \{[3]}λ Π∈  and all ;k λ∈  and 

2) 3
[3]

1( ) =
3i uϕ  

Proof. First of all, ( )3
[3]U

⊥
 is exactly the subspace of games w where ( ,{ }) = 0.w N N  

Of these games, those in VG trivially satisfy ( ) = 0,i
i N

wϕ
∈
∑  since (by Schur’s Lemma) 

( ) .GV Vϕ ⊂  
Thus, efficiency need only be checked in UG. Since kuλ  is fixed by every 

permutation in S3, we have 

( ) = 3 ( )k k
i i

i N
u uλ λϕ φ

∈
∑  

and so ϕ is efficient if and only if 3 ( ) = ( , { }) = 1k k
i u u N Nλ λϕ  (if = [3]λ ). 

Recall that UG is a subspace of games whose value for a given embedded coalition 
(S, Q) depends only on the cardinality of S and the structure of Q. The next corollary 
characterizes the solutions to these games in terms of linearity, symmetry and 
efficiency. It turns out that among all linear symmetric solutions, the egalitarian 
solution is characterized as the unique efficient solution on UG. Formally: 

Corollary 2. Let (3) 3: Gϕ →R  be a linear, symmetric and efficient solution. Then 
for all Gw U∈  

( , { })( ) =
3i

w N Nwϕ  
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In other words, all linear, symmetric and efficient solutions (e.g., Myerson’s value) 
coincide with the egalitarian solution when restricted to these type of games, UG. 

Now, another immediate application is to provide a characterization of all linear, 
symmetric and efficient solutions7. 

Theorem 2. The solution (3) 3: Gϕ → R  satisfies linearity, symmetry and effi- 
ciency axioms if and only if it is of the form 

 ,
(3) ( , ) ( , )

, = , =

( , { })( ) = ( ) ( , ) ( , )
3i k

S Q ECL S Q ECL
S i S k S i S kk

Q Q Q Q

w N Nw n k w S Q kw S Qλ
λ Π

λ
λ λ

ϕ δ
∈ ∈ ∈

∋ ∋∈
∈ ∈

⎡ ⎤+ − −
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑ ∑ ∑  (4) 

for some real numbers { }, | (3) \ {[3]}, .k kλδ λ Π λ∈ ∈  

Proof. Let (3) 3: Gϕ →R  be a linear, symmetric and efficient solution, and (3).w G∈  
Then, by Proposition 3, Schur’s Lemma and Proposition 5: 

( ) ( )

( ) ( )

( )

,
, ,

(3) (3)\{[3]}

3
[3],3 [3] ,

(3) \{[3]}

, ,
(3) \{[3]}

( ) =

=

( ,{ })=
3

k k
i k i i k

k k

i k i

k

k i k

k

w a u z

a u z

w N N w

λ
λ λ λ

λ Π λ Π
λ λ

λ
λ Π

λ

λ λ
λ Π

λ

ϕ ϕ ϕ

ϕ β

β ψ

∈ ∈
∈ ∈

∈
∈

∈
∈

+

+

′+

∑ ∑

∑

∑

 

where , ,= ( 1) ( 1).k k kλ
λ λβ β λ′ − −  The result follows from substituting the values ψi(wλ,k) 

grouping terms, and setting 111],1 111], 1 21],1 21],1
1 1= , = ,
6 3

δ β δ β′ ′− and 21], 2 21], 2
1= .
6

δ β′  

Corollary 3. The space of all linear, symmetric and efficient solutions on (3)G  has 
dimension 

{ }, | (3) \ {[3]}, = 3k kλδ λ Π λ∈ ∈  

 _________________________  
7An equivalent expression to (4) can be found in the paper by Hernández-Lamoneda et al. [6]. 
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It is also possible to give an expression for all linear, symmetric and efficient 
solutions of TU games in a characteristic function form. Let 

( ) = { : 2 | ( ) = 0}n NJ v v→ ∅R  

be the set of all TU games in characteristic function form with n players. 

Corollary 4. The solution (3): nJϕ →R  satisfies the linearity, symmetry and 
efficiency axioms if and only if it is of the form 

( ) ( ) ( )( ) =
3i s s

S N S N
i S i S

v N v S v Sv
s n s

ϕ ρ ρ
∅ ⊂
∈ ∉

+ −
−∑ ∑  

for some real numbers 1 2{ , }.ρ ρ  

Proof. Take w G∈  such that ( , ) = ( )w S Q v S  for all ( , )S Q ECL∈  in Eq. (4). 

4 The case n = 4 

One may notice that all the previous results follow from the decomposition of the 
space of games into a direct sum of irreducible subspaces. In this part, we provide 
such a decomposition for four player games. 

Example 2. For the case = {1, 2, 3, 4}N , (4)dim = 37G  and following from (1), it 
decomposes as follows: 

(4) 1 1 2 1 3 2 4
[1, 1, 1,1] [ 2, 1, 1] [2,1,1] [3,1] [3, 1] [2, 2] [4]=G G G G G G G G⊕ ⊕ ⊕ ⊕ ⊕ ⊕  

Once again, we first obtain a decomposition of each subspace of games kGλ  into 
irreducible subspaces and hence derive the decomposition of (4).G  For this purpose, 
let ,kIλ  be a set such that 

,

\ { } if =1
=

if >1

k
k

k

k m
I

m
λ

λ

λ

⎧⎪
⎨
⎪⎩
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For each ( ) \ {[ ]},n nλ Π∈  k λ∈  and ,nx V∈ define the set of games in ,kGλ

{ }, ,
,|k j
kx j Iλ

λ∈  as follows: 

, ,
= ,

if , =
( , ) =

0 otherwise

i
T Q i Tk j

T j T S

x Q Q S k
x S Q

λ
λ ∈ ∈

≠

⎧ ∈
⎪
⎨
⎪
⎩

∑ ∑
 

Proposition 6. For (4) \ {[4]},λ Π∈  

=k k k kG U V Wλ λ λ λ⊕ ⊕  

where 4= ; ,k kU u Uλ λ  { }, ,
4

,
= |k k j

j I k
V x x Vλ

λ
λ∈

⊕ ∈  and neither any { }, ,
4 4| ; ;k jx x V Vλ ∈

nor kWλ  contains any summands isomorphic to either U4 or V4. The decomposition is 
orthogonal (See proof in the Appendix). 

Remark 4. Proposition 6 does not quite give us a decomposition of kGλ  into 
irreducible summands. The subspace kUλ  is irreducible and kVλ  is a direct sum of 
irreducible subspaces, whereas kWλ  may or may not be irreducible (depending on λ 
and k). However, as we shall see, the exact nature of this subspace plays no role in the 
study of linear symmetric solutions, since it lies in the kernel of any such solution. 

As in the case of three player games, set 
(4)

= .k
G

k

U Uλλ Π
λ

∈
∈

⊕  Once again, GU  is 

a subspace of games, whose values ( , )w S Q  depend only on the cardinality of S and 
on the structure of Q. Set 

(4) \{[4]}
= k

G

k

V Vλλ Π
λ

∈
∈

⊕  and 
(4) \{[4]}

= ,k
G

k

W Wλλ Π
λ

∈
∈

⊕  then: 

(4) = G G GG U V W⊕ ⊕  

Corollary 5. If (4) 4: Gϕ →R  is a linear symmetric solution, then ( ) = 0wϕ  for 
each .Gw W∈  

Proof. Let (4) 4
4 4: = =G G GG U V W U Vϕ ⊕ ⊕ → ⊕R  be a linear symmetric 

solution. Assume GX W⊂  is an irreducible summand in the decomposition of WG 
(even when we do not know the decomposition of WG as a sum of irreducible 
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subspaces, it is known that such a decomposition exists). Let p1 and p2 denote the 
orthogonal projections of 4R  onto 4U  and 4,V respectively. Now,  

(4) 4
4 4: =G U Vϕ → ⊕R  may be written as 1 2= ( , ).p pϕ ϕ ϕ Denote by (4): X Gι →  

the inclusion. Then the restriction of ϕ to X may be expressed as 

| 1 2= = ( , )
X

p pϕ ϕ ι ϕ ι ϕ ι  

Now, 1 4:p X Uϕ ι →  and 2 4:p X Vϕ ι →  are linear symmetric maps. Since 
X is not isomorphic to either of these two spaces, Schur’s Lemma (see the Appendix 
for its statement) says that 1p ϕ ι  and 2p ϕ ι  must be zero. Since this is true for 
every irreducible summand X of WG, ϕ is zero on all of WG. 

Remark 5. According to Proposition 6 and the previous result, in order to study 
linear symmetric solutions, one only needs to look at those games inside .G GU V⊕  

As we have already pointed out, in the case of four player games, we can also 
obtain characterizations of the class of linear and symmetric solutions, as well as of 
the class of linear, symmetric and efficient solutions. Once again, the key is the 
decomposition of (4)G  into irreducible subspaces (Proposition 6), together with Shur’s 
Lemma. 

5. Concluding remarks 

We have noted that the point of view we take in this article depends heavily on the 
decomposition of the space of n-player games into a direct sum of “special” 
subspaces. In the cases where n = 3, 4, it was decomposed as a direct sum of three 
orthogonal subspaces: a subspace containing a type of symmetric games, another 
subspace which we call VG, and a subspace WG, which only plays the role of the 
common kernel of every linear symmetric solution. Although VG does not have 
a natural definition in terms of well known game theoretic considerations, it has 
a simple characterization in terms of vectors whose entries add up to zero. 

Characterizations of solutions follow from such a decomposition in an very 
economical way. It remains an open challenge to obtain the general decomposition of 

( )nG  into a direct sum of irreducible subspaces, since mathematically, the general case 
seems to have a much more complicated structure. 

Although it is true that the characterization of these results could be proved 
without any explicit mention of representation theory with regard to symmetric 
groups, we feel that by doing that we would be withholding valuable information from 
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the reader. This algebraic tool, we believe, sheds new light on the structure of the 
space of games in partition function form and their solutions. Part of the purpose of 
the present paper is to share this viewpoint with the reader. 

Appendix 

A reference for basic representation theory is Fulton and Harris [4]. Nevertheless, 
we recall all the basic facts that we need. 

The symmetric group Sn acts on G via linear transformations (i.e., G is 
a representation of Sn). That is to say, there is a group homomorphism : ( ),nS GL Gρ →
where ( )GL G  is the group of invertible linear maps in G. This relation is given by: 

1( )( , ) := [ ( )( )]( , ) = [ ( , )]w S Q w S Q w S Qθ ρ θ θ −  

for every ,nSθ ∈ w G∈  and ( , ) .S Q ECL∈  

Definition 6. Let H be an arbitrary group. A representation of H is a homomorphism 
: ( ),H GL Xρ → where X is a vector space and ( ) = { : |GL X T X X T→  linear and 

invertible}. 
In other words, a representation of H is a map assigning to each element h H∈  

a linear map ( ) :h X Xρ →  that respects multiplication: 

1 2 1 2( ) = ( ) ( )h h h hρ ρ ρ  

for all 1 2, .h h H∈  
One usually abuses notation and talks about the representation X without explicitly 

mentioning the homomorphism ρ. Thus, when applying the linear transformation 
corresponding to h H∈  to the element ,x X∈ we write hx  rather than ( ( ))( ).h xρ  

The space of payoff vectors, nR is also an Sn representation: 

1 2 1 2 (1) (2) ( )( , , ..., ) := [ ( )]( , , ..., ) = ( , , ..., )n n nx x x x x x x x xθ θ θθ ρ θ  

Definition 7. Let 1X  and 2X  be two representations of the group H. 
• A linear map 1 2:T X X→  is said to be H equivariant if ( ) = ( )T hx hT x  for 

every h H∈  and 1.x X∈  
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• 1X  and 2X  are said to be isomorphic H-representations, 1 2; ,X X if there exists 
a H-equivariant isomorphism between them. 

Thus, two representations that are isomorphic are, as far as all problems dealing 
with linear algebra on a group of symmetries, the same. They are vector spaces of the 
same dimension, where actions are seen to correspond according to a linear 
isomorphism. 

Definition 8. A representation X is irreducible if it does not contain a nontrivial 
invariant subspace. That is to say, if Y X⊂  is also a representation of H (meaning 
that ,hy Y∈  ),h H∀ ∈ then Y is either {0}  or all of .X  

Proposition 7. For any representation X of a finite group H, there is 
a decomposition 

1 2
1 2=

aa a j
jX X X X
⊕⊕ ⊕⊕ ⊕ ⋅⋅ ⋅⊕  

where the Xi are distinct irreducible representations. This decomposition is unique, as 
are the Xi that occur and their multiplicities ai. 

This property is called “complete reducibility” and the extent to which the 
decomposition of an arbitrary representation into a direct sum of irreducible ones is 
unique is one of the consequences of the following: 

Theorem 3 (Schur’s Lemma). Let X1, X2 be irreducible representations of a group 
H. If 1 2:T X X→  is H equivariant, then = 0T  or T is an isomorphism. 

Moreover, if X1 and X2 are complex vector spaces, then T is unique up to 
multiplication by a scalar λ ∈C.  

The previous theorem is one of the reasons why it is worth carrying around the group 
action when there is one. Its simplicity hides the fact that it is a very powerful tool. 

Following Fulton and Harris [4], the only three irreducible representations of S3 
are the trivial U3, the standard V3 and alternating representation8 .U ′ Thus, for an 
arbitrary representation X of S3 we can write 

 3 3= a b cX U U V⊕ ⊕ ⊕′⊕ ⊕  (5) 

and there is a way to determine the multiplicities a, b and c, in terms of = (123)τ  and 
= (12),σ which generate S3, c, for example, is the number of independent eigenvectors 

 _________________________  
8Here, this action is given by = sgn( )x xθ θ , for 3Sθ ∈  and .x ∈R  
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of τ with eigenvalue ω9 whereas a + c is the multiplicity of 1 as an eigenvalue of σ, 
and b + c is the multiplicity of –1 as an eigenvalue of σ. 

Proposition 2. For (3) \{[3]}λ Π∈  

=k k kG U Vλ λ λ⊕  

where 3= ;k kU u Uλ λ  and { },
3 3= | ; .k kV z z V Vλ

λ ∈  The decomposition is orthogonal. 

Proof. We start by showing that kGλ  has exactly 1 copy of U3 and 1 copy of V3 if 
(3) \ {[3]}.λ Π∈  

It is clear that ( , )= { | ( , ) }S Qu S Q ECL∈B  form a basis for (3) ,G  where 

 ( , )

1 if ( , ) = ( , )
( , ) =

0 otherwiseS Q

T P S Q
u T P ⎧

⎨
⎩

 (6) 

For (3) ,G it is easy to verify that [ ]τ
B

 has the characteristic polynomial 
34 2( ) = ( 1) ( )( )p x x x xω ω⎡ ⎤− − −⎣ ⎦  and [ ]σ

B
 has the characteristic polynomial 

7 3( ) = ( 1) ( 1) .p x x x− +  From these and (5), we have c = 3, a + c = 7 and b + c = 3. 
Thus 

(3) 4 3
3 3=G U V⊕ ⊕⊕  

This implies directly that if (3) \ {[3]},λ Π∈  then every kGλ  has exactly 1 copy of 
U3 and 1 copy of V3, since 3

[3] [ ] 3= ;n
nG u UR  and dim = 3.kGλ  

Now, define the map :k n kT Gλ λ→R  by ,( ) = .k kT z zλ
λ  This map is an isomorphism 

between kUλ  and 3U  (similarly, between kVλ  and 3V ), since it is linear, S3-equivariant 
and 1–1. From Proposition 9, we obtain the decomposition 3

3 3= .U V⊕R  Thus, inside 
,kGλ  we have the images of these two subspaces: 3= ( )k kU T Uλ λ  and 3= ( ).k kV T Vλ λ  

 _________________________  
9Denoting by 21, ,ω ω  the cube roots of unity. 
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Finally, the invariant inner product, defines an equivariant isomorphism, which in 
particular must preserve the decomposition. This implies the orthogonality of the 
decomposition. 

There is a remarkably effective technique for decomposing any given finite 
dimensional representation into its irreducible components. The secret is character 
theory. In the analysis of the representations of S3, the key was to study the 
eigenvalues of the actions of individual elements of S3. This is the starting point of 
character theory. Finding individual eigenvalues, however, is difficult. Luckily, it is 
sufficient to consider their sum, the trace, which is much easier to compute. 

Definition 9. Let : ( )H GL Xρ →  be a representation. The character of X is the 
complex-valued function :X Hχ →C , defined as: 

( )( ) = ( )X h Tr hχ ρ  

The character of a representation is easy to compute. If H acts on an n-dimen-
sional space X, we write each element h as an n × n matrix according to its action 
expressed in some convenient basis, then sum up the diagonal elements of the matrix 
describing h to get ( ).X hχ For example, the trace of the identity map of an n-dimen- 
sional vector space is the trace of the n n×  identity matrix, i.e. n. In fact, 

( ) = dimX e Xχ  for any finite dimensional representation X of any group. 
Notice that, in particular, we have 1( ) = ( )X Xh ghgχ χ −  for , .g h H∈  So that χX is 

constant on the conjugacy classes of H. Such a function is called a class function. 

Definition 10. Let class ( ) = { : |H f H f→C C  is a class function on }.H If 

1 2 class, ( )Hχ χ ∈C , we define an Hermitian inner product on class ( )HC  by 

 
1 2 1 2

1, = ( ) ( )
h H

h h
H

χ χ χ χ
∈
∑

 (7) 

As was said, the character of a representation of a group H is really a function on 
the set of conjugacy classes in H. This suggests expressing the basic information about 
the irreducible representations of a group H in the form of a character table. This is 
a table with the conjugacy classes [h] of H listed across the top, usually given by 
a representative h, with the number of elements in each conjugacy class written above 
it. The irreducible representations of H are listed on the left and the value of the 
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character on the conjugacy class [h] is given in the appropriate cell. For example, if 
H = S4 and we only focus on the irreducible representations U4 and V4, then10: 

4

4

4

1 6 8 6 3
[ ] [(12)] [(123)] [(1234)] [(12)(34)]
1 1 1 1 1
3 1 0 1 1

S e
U
V − −

 

Finally, the multiplicities of the irreducible subspaces in a representation can be 
calculated via the following proposition: 

Proposition 9. If 1 2
1 2= ,

aa a j
jZ Z Z Z
⊕⊕ ⊕⊕ ⊕ ⋅⋅ ⋅ ⊕ then the multiplicity of Zi 

(irreducible representation) in Z, is: 

= ,i Z Zi
a χ χ  

where, is the inner product given by (7). 

Proposition 6. For (4) \ {[4]},λ Π∈  

=k k k kG U V Wλ λ λ λ⊕ ⊕  

where 4= ; ,k kU u Uλ λ  { }, ,
4

,
= |k k j

j I k
V x x Vλ

λ
λ∈

⊕ ∈  and neither any { }, ,
4| ;k jx x Vλ ∈ V4; 

nor kWλ  contains any summands isomorphic to either U4 or V4. The decomposition is 
orthogonal. 

Proof. First, 
4

,k UGλ
χ χ  and 

4
,k VGλ

χ χ  are the number of subspaces isomorphic 

to the trivial (U4) and standard representation (V4) within ,kGλ respectively. The 
characters for each kGλ  are given by11: 

 _________________________  
10In fact, there are five irreducible representations of S4. 
11In which a convenient basis is the one given in (6). 
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4
1
[1111]
1
[211]
2
[211]
1
[31]
3
[31]
2
[22]

1 6 8 6 3
[(1)] [(12)] [(123)] [(1234)] [(12)(34)]

4 2 1 0 0
12 2 0 0 0
6 2 0 0 2
4 2 1 0 0
4 2 1 0 0
6 2 0 0 2

S
G
G
G
G
G
G

 

Thus from (7), 
4

, = 1k UGλ
χ χ  for each ,kGλ   

1 2 1 3 24 4 4 4 4[1111] [211] [31] [31] [22]
, = , = , = , = , = 1V V V V VG G G G G

χ χ χ χ χ χ χ χ χ χ   

and 

 1 4[211]
, = 2VG

χ χ  

The last part is to identify such copies of U4 and V4 inside .kGλ  For this end, define 
the functions , , : n k

k jL Gλ λ→R  by , ,
, , ( ) = .k j
k jL x xλ

λ  These maps are isomorphisms 

between kUλ  and U4 (similarly, between { }, ,
4|k jx x Vλ ∈  andV4), since they are linear, 

S4-equivariant and 1–1. Thus, inside of ,kGλ  we have the following images of these 
two subspaces: , , 4= ( )k

k jU L Uλ λ  and , , 4
,

= ( ).k
k jj I k

V L Vλ λ
λ∈

⊕  

The orthogonality of the decomposition follows again from the fact that the 
invariant inner product ,  gives an equivariant isomorphism, which preserves the 
decomposition. 
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