
O P E R A T I O N S R E S E A R C H A N D D E C I S I O N S
No. 2 2013
DOI: 10.5277/ord130208

Barbara MAŻBIC-KULMA*
Jan W. OWSIŃSKI**
Krzysztof SĘP**
Jarosław STAŃCZAK**

THE KERNEL AND SHELL STRUCTURE AS A TOOL FOR
IMPROVING THE GRAPH OF TRANSPORTATION CONNECTIONS

A model of a transportation system is expected to be useful in simulations of a real system to
solve given transportation tasks. A connection graph is routinely used to describe a transportation sys-
tem. Vertices can be train stations, bus stops, airports etc. The edges show direct connections between
vertices. A direct approach can be difficult and computational problems can arise in attempts to or-
ganize or optimize such a transportation system. Therefore, a method for aggregating such graphs was
introduced, using a general kernel and shell structure and its particular instances: α-clique structured
graphs of connections and a hub and spoke transformation of the source graph. These structures ena-
ble the concentration and ordering of transport between vertices and reduction of the analyzed graph.
To obtain the desired structures, several versions of a specialized evolutionary algorithm were devel-
oped and applied.

Keywords: transport, connections graph, hub and spoke, kernel and shell, α-clique, genetic algorithm

1. Introduction

A logistic system is usually represented by a graph of connections, allowing the
introduction of corresponding kernel and shell structures [9, 10]. The vertices of this
graph can be railway stations, bus stations or airports, etc., and edges correspond to
the presence of connections between vertices. In this paper, we propose an evolution-

*Warsaw School of Information Technology, ul. Newelska 6, 01-447 Warsaw, Poland, e-mail:
kulma@ibspan.waw.pl

**Systems Research Institute, Polish Academy of Sciences, 01-447 Warsaw, ul. Newelska 6, Poland,
e-mail addresses: Jan.Owsinski@ibspan.waw.pl, sep@ibspan.waw.pl, stanczak@ibspan.waw.pl

B. MAŻBIC-KULMA et al. 92

ary method for optimizing a logistic network by introducing a kernel and shell struc-
ture, which is a generalization of the well known hub and spoke structure, [3, 4, 8],
and similar approaches, including the α-clique structure, [6, 7, 9–11].

The kernel and shell structure enables convenient concentration of flows of
transport. The kernel subgraph is constituted of a set of strongly connected vertices
with cheap, fast or frequent connections (depending on the transportation system mod-
eled), while the shell vertices are less frequently connected, mostly with their kernel
vertices (hubs). Instead of many bilateral connections between vertices, only local
connections between kernel vertices and local connections between kernel vertices and
the corresponding shell vertices are required. To simplify the problem, we deal with
simple, undirected and unweighted graphs but the methods proposed can be extended
and applied to weighted and directed graphs. The graph of an existing traffic system
has vertices corresponding to traffic nodes and edges corresponding to traffic connec-
tions. The kernel and shell structure reduces the complexity of the resource manage-
ment problem and allows more frequent connections between selected points, lower
average journey times, lower costs of transport, and a lower number of vehicles re-
quired to service all connections. Thanks to this transformation, local connections are
easier to synchronize and it is easier to make timetables. We use two basic approaches
to transform an unstructured graph of connections into a kernel and shell structure: the
α-clique method, [13], and the hub and spoke method. In the case where connections
between shell nodes and their kernel node and also bilateral connections among nodes
within the shell structure are required, the α-clique seems to be an appropriate solu-
tion, [12, 13]. This method is based on the notion of an α-clique, a connected
subgraph with nodes less connected than a clique, but with at least an α percentage of
connected nodes within an α-clique. This method, and the notion of an α-clique were
developed by the authors as a method of transforming the graph of connections into
a kernel and shell structure. The α-clique method can be applied in two modes:

• the number of α-cliques and possibly some kernel nodes are predetermined,
• values of α for the kernel subgraph and the shell subgraphs are imposed and the

kernel nodes are chosen using an appropriate method.
The first case is probably more useful than the second, because in real-world sys-

tems candidates for kernel nodes are often known. The hub and spoke method has
been developed based on work presented in [3, 4, 8], where similar structures and their
applications are described. This method is useful in situations where only connections
between the kernel node (the hub) and the shell nodes (spokes) are important, all the
remaining transfers are realized via kernel nodes. Similarly, as in the case of the
α-clique method, it is possible to define several cases of applications:

• predetermined number of and/or specified kernel nodes,
• minimum number of kernel nodes assuring the connectivity of a graph,
• indirectly determined structure of connections according to chosen parameters.

The kernel and shell structure as a tool for improving the graph of transportation connections 93

The evolutionary algorithm (EA) has been chosen as a tool for transforming such
graphs, because the transformation process is a hard computational problem and there
are no efficient algorithms specifically designed for solving it.

2. Graphs

The notions described below are based on [15]. A graph is a pair G = (V, E),
where V is a non-empty set of vertices and E is a set of edges. Each edge is a pair of
vertices {v1, v2} with v1 ≠ v2. A clique (a complete subgraph) Q = (Vq, Eq) in the graph
G = (V, E) is a graph such that Vq ⊆ V and Eq ⊆ E and Card(Vq) = 1 or each pair of
vertices v1, v2 ∈ Vq fulfills the condition {v1, v2} ∈ Eq [2]. Any subgraph of a clique is
also a clique.

Αn α-clique [6, 10–12] can be defined as follows: let A = (V', E') be a subgraph of
graph G = (V, E), V' ⊆ V, E' ⊆ E, k = Card(V') and let ki be the number of vertices
vj ∈ V' such that {vi, vj} ∈ E'.

1. For k = 1 the subgraph A of graph G is an α-clique(α).
2. For k > 1 the subgraph A of graph G is an α-clique(α) if for all vertices vi ∈ V'

the condition α = (ki + 1)/k is fulfilled, where α ∈ (0, 1].
From here onwards, we will use the notion of α-clique to denote α-clique(α) for

an earlier established α. A subgraph of an α-clique may not be an α-clique for the
established α.

A kernel and shell structure in the graph G(V, E) is composed of two graphs:
• kernel – a subgraph, which is constituted of a group of strongly connected vertices

K(Vk, Ek), depending on the needs and possibilities of the transport system or on the struc-
ture of the input graph, it can be a clique (ideally), an α-clique, or a connected subgraph;

• shell – a graph S(Vs, Es) where Vs = V – Vk and Es = E – Ek, depending on the re-
quirements of the optimized transportation system, it can be an α-clique (including its
kernel node) or a tree with the kernel node being the root and shell nodes being leaves.

For logistic modeling, we propose evolutionary methods (denoted EA, for evolu-
tionary algorithms) that transform the graph of connections into an instance of the shell
and kernel structure leading to hub-and-spoke or α-clique structures according to prob-
lem-specific restrictions. An α-clique structure in the graph of connections (Fig. 1b) is
also an instance of the more general kernel and shell form. It consists of several pe-
ripheral (shell) α-cliques Gα with the desired values of α, connected with a central
(kernel) α-clique Gc of strongly connected nodes, ideally with α ≈ 1. In the case of
a sparse graph of connections, the requirement that α ≈ 1 for the kernel subgraph can
be weakened to the condition that it must be a connected graph to preserve its func-
tionality. Depending on the type of solution required, the kernel nodes or the number
of kernel nodes can be imposed, or the evolutionary method can suggest the best can-

B. MAŻBIC-KULMA et al. 94

didates, taking into account the α parameters imposed on the shell α-cliques, which
describe the strength of connections within the derived α-cliques. In both cases, the
EA maximizes the strength of connections within the obtained α-cliques and tries to
derive structures with the desired properties.

Fig. 1. A source graph (a) and the α-clique kernel and shell structure obtained (b)

Fig. 2. A source graph (a) and the hub and spoke structure obtained (b)

A hub and spoke structure (Fig. 2b) is a graph Hs = (Gh ∪ Gs, E), where the subset Gh
forms at least a connected graph (kernel) with the relevant subset of edges from the
set E, each vertex from the subset Gs has degree 1 and is connected with exactly one
vertex from the subset Gh (shell) [7, 12]. Hub and spoke is a particular case of the ker-
nel and shell structure. This structure can be used in logistic models, where direct con-
nections between the nodes-“spokes” attached to a hub are not very important and
direct connections are not necessary. The hub and spoke structure can be derived using
one of three possible methods. The first method uses a predetermined, given by some ex-
pert, number of communication hubs with the possibility of directly determining which
nodes should become hubs or selecting them by an appropriate method. The second meth-
od makes an attempt to find the minimum number of hubs which constitute at least a con-

a) b)

a) b)

The kernel and shell structure as a tool for improving the graph of transportation connections 95

nected subgraph with all the remaining nodes connected to their hubs. It should be noted
that the number of hubs used in the first method must be at least as big as this minimum
value. The third method assumes that the number of communication hubs is determined
indirectly by the program parameters imposed, mainly the value of α (a hub subgraph
must constitute an α-clique with the imposed value of α).

3. The evolutionary method of finding the kernel
and shell structure of the graph of connections

EAs are often used to solve difficult graph problems such as graph coloring, TSP,
graph partitioning, finding maximum cliques, etc., [1, 5, 14, 16], thus it seems fully
justified to apply an evolutionary algorithm to the presented problem. The problem of
encoding (an individual representation) depends on the desired graph structure to be
obtained using the EA. In our approach, the information about any graph being pro-
cessed is stored in an adjacency matrix describing all the connections between nodes
of the graph, but particular problems require different methods to represent solutions.
The “kernel and shell” representation of a graph of connections is a general structure,
several particular instances of which are described in this article together with a spe-
cific method of encoding in each case. Generally, the encoding methods described are
rather similar, but it is necessary to point out the differences. The fitness function is a mod-
ified (scaled, translated, etc.) function evaluating each member of the population (how
good a solution each represents). It is calculated for computational purposes within the
EA. This quality function is responsible for obtaining the appropriate structure of a graph.
This function must precisely direct the EA toward the desired structure of the graph, but
usually several quality functions may be used, depending on the input data, or the set of
kernel nodes or shell nodes one wants to obtain. Usually, the fitness function has to con-
tain a penalty component for potentially invalid solutions. Another important problem is to
design genetic operators for the accepted data structure, taking into account the constraints
imposed on solutions, so that when standard crossover and mutation operators are not
appropriate, specialized operators must be defined to efficiently solve such problems. This
section describes appropriate modifications of the methods of solution in detail.

3.1. The α-clique structure of kernel and shell

3.1.1. The α-clique structure with a predetermined number of kernel nodes

The data structure accepted contains a table of the predetermined number of
α-cliques which constitute a shell of ordinary nodes. Each α-clique has a list of nodes
attached and the element chosen to be the representative of this α-clique in the kernel

B. MAŻBIC-KULMA et al. 96

structure – a communication hub. Each node is considered only once in each solution, thus
the α-cliques are disjoint structures. The kernel is an α-clique with the value of α as big
as possible. Ideally, a kernel should constitute a clique, but in real cases where the
connections between nodes are rather sparse, it is admissible that the kernel constitutes
simply a connected graph. This condition is checked during the computations and if it
is not satisfied, the penalty function significantly decreases the value assigned to the
quality of such a solution:

1

1
1 min

1
1 1

if 0 1max , 1 ()
if 0

n

K i i
i

Q Q
Q Q k lm

kQ m Q
α α

=

⎧ ≥⎪= = − + − −⎨
⎪ <⎩

∑ (1)

where: n – imposed number of shell α-cliques in the solution evaluated, k – number of
nodes in the considered graph, ki – number of nodes in the ith α-clique, li – number of
connections between the hub of the ith α-clique and other nodes in this α-clique,
m – number of connected subgraphs in the kernel, αmin – minimum value of α in the
shell α-cliques derived, αK – value of α in the kernel α-clique derived.

The fitness function (1) promotes a kernel α-clique with a value of αΚ as close to 1
as possible, or if the transformed graph is very sparse favors a connected subgraph, if
this is possible. If not, this means that the input graph is not connected and the prob-
lem is unsolvable. The shell α-cliques should have values of α as high as possible and
as many as possible of their nodes should be connected with their communication hub.
The data structure described requires specialized genetic operators, which modify the
population of solutions. Each operator is designed to preserve the property of being
α-clique in the modified parts of solutions. If a modified solution violates the condi-
tion of being an α-clique, then the operation is canceled and no modification of the
solution is performed. Using this method, it is more difficult for the evolutionary algo-
rithm to find satisfactory solutions, due to the possible bigger problems with existence
of local maxima than when using the penalty function, but it gives the certainty that
the solutions computed are always feasible. The genetic operators defined are:

1. Mutation – the exchange of randomly chosen nodes in different α-cliques.
2. Movement of a randomly chosen node to a different α-clique.
3. Random selection of a kernel node from a selected α-clique – this operator is

inactive when kernel nodes are explicitly assigned.
4. “Intelligent” movement – performed only if such a modification gives a better

value of the fitness function.

3.1.2. The α-clique structure with a non-fixed number of kernel nodes

In the case of a non-fixed size of kernel subgraph, the number of kernel nodes is
unknown and varies during the computations. Instead of fixing the number of shell

The kernel and shell structure as a tool for improving the graph of transportation connections 97

nodes, the minimum values of α for the shell α-cliques are imposed on accepted solu-
tions. This limitation, together with the quality function to be optimized (2), indirectly
determines the structure of the solutions obtained. Thus, the algorithm must find the
best candidates for kernels. In this case, a somewhat different method of encoding is
accepted than in the previous case. The data structure contains a list of the kernel
nodes chosen (communication hubs) and lists of α-cliques, which constitute shells of
ordinary nodes. As in the previous case, each node is considered only once in each
solution.

1

1max 1 1
n

i i
i i

i i

k l hQ k k
nm n k n=

⎛ ⎞
= − − + − + −⎜ ⎟

⎝ ⎠
∑ (2)

where: n – number of α-cliques in the solution evaluated, m – number of connected
subgraphs in the kernel subgraph, ki – number of nodes in the ith α-clique, k – number
of nodes in the whole graph, li – number of connections between the hub from the ith
α-clique and other nodes in this α-clique, hi – number of connections between hub i
and other hubs.

The fitness function (2) promotes lower numbers of bigger shell subgraphs, ideally
of a size almost equal to the average number of nodes in α-cliques, thus minimizing
the number of α-cliques obtained, while assuring the connectivity of the kernel
subgraph, maximizing the number of connections between hubs and the number of
connections between each hub selected and its α-clique. As in the previously de-
scribed case, each operator is designed in such a manner that the modified parts of
these solutions remain α-cliques. If the modified part of a solution is not an α-clique,
then the operation is canceled and no modification of the solution is performed. Addi-
tionally, each operator modifies the elements selected to be hubs for each α-clique,
using a simple mutation operator. The genetic operators defined are:

1. Mutation – exchange of randomly chosen nodes in different α-clique.
2. Movement of a randomly chosen node to a different α-clique.
3. “Intelligent” movement – performed only if this modification gives a better

value of the fitness function;
4. Concatenation – attempt to concatenate (mainly small) α-cliques.

3.2. The hub and spoke structure

3.2.1. The hub and spoke structure with a predetermined number of kernel nodes

A population member defines the spokes that do not constitute α-cliques, but are
groups of nodes that are connected with their hubs. The subgraph of hubs is an

B. MAŻBIC-KULMA et al. 98

α-clique with as big value of α as possible – ideally, hubs should constitute a com-
plete subgraph but in real applications where hubs are defined to be the existing junc-
tion nodes, it is admissible that the subgraphs of hubs simply constitute a connected
graph. The kernel nodes can be explicitly assigned or only their number may be set.
An individual encoding resembles the structures used in the previously described cas-
es, containing a table of the hubs selected with the corresponding, dynamic lists of
selected spokes for each hub. For the hub and spoke structure with a predetermined
number of kernel nodes, the quality function promotes solutions where a rather small
subgraph of hubs is (almost) fully connected and the generated sets of spokes attached
to their hubs are of medium size. The fitness function (3) promotes bigger shell
subgraphs, ideally of a size almost equal to the average number of spokes, assuring the
connectivity of the kernel and maximizing the number of connections among hubs:

1

1max
n

i
i i

i

k n hQ k k
n n n=

⎛ ⎞−
= − − +⎜ ⎟

⎝ ⎠
∑ (3)

where: n – predetermined number of hubs in the solution evaluated, m – number of
connected subgraphs in the kernel subgraph, ki – number of spokes attached to the ith
hub, k – number of nodes in the whole graph, hi – number of connections between
hub i and other hubs.

This problem can be solved using similar operators to the ones used for the
α-clique methods, but different conditions are checked before they are performed.
When one node (spoke) is to be moved to another hub shell, first it must be checked
that it is connected to this new hub. If not, the operation is canceled with similar con-
sequences to those previously described for the α-clique method. In this case, the set
of genetic operators contains:

1. Mutation – exchange of randomly chosen nodes in different sets of spokes.
2. Movement of a randomly chosen node to a different set of spokes.
3. Exchange of randomly selected hubs of randomly selected spokes – this opera-

tor is inactive when kernel nodes are explicitly assigned.
A problem arises when the predetermined number of kernel nodes is lower than the

minimal value that assures that all the shell nodes will be attached to their kernel hubs.
This problem can be solved in two ways. The former enables the final result to contain
unattached shell nodes. The other increases the number of kernel nodes to obtain a con-
nected graph. These methods are realized using modified forms of the quality func-
tion (3) with a penalty for unattached shell nodes or additional kernel nodes.

3.2.2. The hub and spoke structure with a non-fixed number of kernel nodes

In this case, the number of kernel nodes (hubs) is unknown in advance and varies
during the computations. The algorithm must find the set of kernel candidates optimiz-

The kernel and shell structure as a tool for improving the graph of transportation connections 99

ing the quality function (4). The data structure contains a dynamic table of the kernel
nodes chosen and dynamic lists of spokes, which constitute shells of ordinary nodes.
As in the previously considered cases, each node is considered only once in each solu-
tion.

1

1max
n

i
i i

i

k n hQ k k
nm n n=

⎛ ⎞−
= − − +⎜ ⎟

⎝ ⎠
∑ (4)

where: n – number of hubs in the solution evaluated, m – number of connected
subgraphs in the kernel subgraph, ki – number of nodes (spokes) attached to the ith
hub, k – number of nodes in the whole graph, hi – number of connections between hub
i and other hubs.

The fitness function (4) promotes bigger shell subgraphs, ideally of a size almost
equal to the average number of spokes, assuring connectivity of the kernel subgraph
and maximizing the number of connections among hubs. The set of genetic operators
in this case contains:

1. Mutation – exchange of randomly chosen nodes in different sets of spokes.
2. Movement of a randomly chosen node to a different set of spokes (random and

“intelligent” versions, the “intelligent” version performs changes in an individual only
if the new set of spokes is better connected with their kernels than before this opera-
tion).

3. Exchange of a randomly selected hub for a randomly selected spoke (as in the
previous case – random and the “intelligent” versions).

4. Concatenation – attempt to concatenate two sets of spokes (so as to minimize
the number of kernel nodes).

3.2.3. The hub and spoke structure with the minimum number of kernel nodes

The hub and spoke structure with the minimum size of kernel subgraph is a special
case of the structure with an indirectly imposed number of kernel nodes but this prob-
lem is computationally more difficult to solve. The method of encoding is identical to
the case of a non-fixed size of kernel subgraph but the fitness function to be optimized
is different:

 min Q nm= (5)

where: n – number of hubs in the solution, m – number of connected subgraphs in the
kernel.

The fitness function (5) promotes small sets of connected kernel nodes with all the
spokes attached to their hubs. The set of genetic operators in this case contains:

1. Mutation – exchange of randomly chosen nodes in different sets of spokes.

B. MAŻBIC-KULMA et al. 100

2. Movement of a randomly chosen node to a different set of spokes (random and
“intelligent” versions, the “intelligent” version performs changes in an individual only
if the new set of spokes is better connected with their kernels than before this opera-
tion).

3. Exchange of a randomly selected hub for a randomly selected spoke (as in the
previous case, random and “intelligent” versions).

4. Concatenation – attempt to concatenate two sets of spokes (tries to minimize the
number of kernel nodes).

4. Results of computer simulations

To test these methods, we used examples from BHOSLIB (Benchmarks with Hid-
den Optimum Solutions for Graph Problems):

http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm.
The problems selected involve a graph with 450 vertices and 83 198 edges with

the maximum clique size equal to 30 (frb30-15-clq.tar.gz) and a graph with 4000 ver-
tices and 7 425 226 edges (frb100-40.clq.gz). The sizes of these problems are relative-
ly big, but their complexity is similar to problems encountered during the planning of
real connections.

4.1. Results obtained for the α-clique method

4.1.1. The problem with a non-fixed number of kernel nodes

The first step of obtaining a kernel and shell structure from the input graph using
the α-clique method is to find a value of α that gives the desired results. Thus, it is
necessary to decide which solution is the closest to our requirements. Using various
values of α, we obtained several different solutions. It is difficult to foresee a priori,
taking into account only the value of α, which value would be the best, but after com-
putations it is quite easy to choose the solution with the most acceptable parameters.
The most important factor influencing this decision is the number of kernel nodes
obtained. For a problem similar to that of connecting large European cities (frb30-15-1),
the best solutions are probably the ones for α = 0.8 with 10 kernel nodes. Of course,
we can also try to find different numbers of kernel nodes by adopting values of α be-
tween the tested ones. The process of genetic computations lasts about 5–10 minutes,
depending on the operating system and machine used, together with the value of α.
Thus it is possible to compute solutions using several values of α, before accepting
one. The results presented provide a distinctly simplified structure of connections. For
example, in the case of α = 0.80, we obtained an output structure with about 1018 connec-

The kernel and shell structure as a tool for improving the graph of transportation connections 101

tions in place of the input structure with 83 198 connections. This lower number of con-
nections implies faster and more frequent connections with lower costs for carriers and
their clients. The results obtained for larger graphs have similar properties, but the
computations last longer, especially for the frb100-40 problem. The computational
complexity depends mainly on the number of edges, the number of vertices is less
significant. It should be noted that for all the graphs considered, the kernel constitutes
at least a connected subgraph with strongly connected α-cliques attached to shell
subgraphs.

Table 1. Comparison of the results obtained with various values of α

α Subject Min Max Median
No. of
kernel
nodes

αK
No. of

connections

Name of problem: frb30-15-1 Vertices: 450 Edges: 83 198

0.80
cardinality of shell 40 50 45

10 1.00 9067 degree of kernel nodes in shell subgraphs 39 48 43
degree of kernel nodes in kernel subgraph 10 10 10

0.90
cardinality of shell 22 23 22

20 0.95 5225 degree of kernel nodes in shell subgraphs 21 23 22
degree of kernel nodes in kernel subgraph 19 20 20

1.00
cardinality of shell 14 16 15

30 0.93 4025 degree of kernel nodes in shell subgraphs 14 16 15
degree of kernel nodes in kernel subgraph 28 30 29

Name of problem: frb100-40 Vertices: 4000 Edges: 7 425 226

0.80
cardinality of shell 4000 4000 4000

1 1.00 7 429 226 degree of kernel nodes in shell subgraphs 3727 3727 3727
degree of kernel nodes in kernel subgraph 1 1 1

0.90
cardinality of shell 76 420 187

20 0.75 462 250 degree of kernel nodes in shell subgraphs 74 407 173
degree of kernel nodes in kernel subgraph 16 20 18

1.00
cardinality of shell 44 49 48

82 0.96 102 869 degree of kernel nodes in shell subgraphs 44 49 48
degree of kernel nodes in kernel subgraph 79 82 81

4.1.2. The problem with a fixed number of kernel nodes

In this approach, the results depend on the number of shell structures. The results
obtained show that conversion of a graph of connections into a kernel and shell struc-
ture can be obtained using a different approach. As in the previous case, the computa-
tions last significantly longer for the graph with 7 425 226 edges but the kernel
subgraphs are successfully connected. All the constraints imposed on the obtained
kernel and shell structures can be fulfilled for a range of numbers of kernel nodes,

B. MAŻBIC-KULMA et al. 102

beyond these values it would be necessary to modify the graph of connections to ob-
tain feasible solutions.

Table 2. Comparison of the results obtained for various numbers of kernel nodes

Desired
number
of kernel
 nodes

Subject Min Max Median αmin αK No. of
connections

Name of problem: frb30-15-1 Vertices: 450 Edges: 83 198

5
cardinality of shell 53 140 92

0.81 1.00 20 035 degree of kernel nodes in shell subgraphs 45 117 79
degree of kernel nodes in kernel subgraph 5 5 5

10
cardinality of shell 28 78 34

0.82 1.00 11 140 degree of kernel nodes in shell subgraphs 26 67 32
degree of kernel nodes in kernel subgraph 10 10 10

50
cardinality of shell 1 21 7

1.00 0.80 5111 degree of kernel nodes in shell subgraphs 1 21 7
degree of kernel nodes in kernel subgraph 40 49 42

100
cardinality of shell 1 20 1

1.00 0.79 7881 degree of kernel nodes in shell subgraphs 1 20 1
degree of kernel nodes in kernel subgraph 79 93 84
Name of problem: frb100-40 Vertices 4000 Edges 7 425 226

5
cardinality of shell 230 1871 537

0.90 1.00 2 319 961 degree of kernel nodes in shell subgraphs 211 1727 502
degree of kernel nodes in kernel subgraph 5 5 5

10
cardinality of shell 46 1706 126

0.91 1.00 1 917 039 degree of kernel nodes in shell subgraphs 42 1558 120
degree of kernel nodes in kernel subgraph 10 10 10

50
cardinality of shell 44 538 59

0.93 0.94 322 273 degree of kernel nodes in shell subgraphs 41 503 56
degree of kernel nodes in kernel subgraph 47 50 48

100
cardinality of shell 1 71 49

1.00 0.89 120 893 degree of kernel nodes in shell subgraphs 1 98 49
degree of kernel nodes in kernel subgraph 89 98 93

4.2. Results obtained for the hub and spoke method

4.2.1. The problem of finding the minimum number of kernel nodes

It should be noted that this version of the algorithm limits the possibilities of trans-
forming the graph too strongly. In this case, only one solution is generated and the sets
of spokes may be too big to be useful. But this result helps us to find the lower limit
on the possible and practically useful numbers of hubs.

The kernel and shell structure as a tool for improving the graph of transportation connections 103

Table 3. The minimum numbers of kernel nodes

No. of kernel
nodes obtained Subject Min Max Median αK No. of

connections

Name of problem: frb30-15-1 Vertices: 450 Edges: 83 198

2
cardinality of shell 104 344 104

1.00 899 degree of kernel nodes in shell subgraphs 104 344 104
degree of kernel nodes in kernel subgraph 2 2 2

Name of problem: frb100-40 Vertices: 4000 Edges: 7 425 226

2
cardinality of shell 435 3563 435

1.00 7999 degree of kernel nodes in shell subgraphs 435 3563 435
degree of kernel nodes in kernel subgraph 2 2 2

4.2.2. The problem with a fixed number of kernel nodes

This method generates a kernel and shell structure with the given number of hubs.
Due to the structure of the input graph, some hub and spoke structures with a prede-
fined number of kernel nodes may not be achieved without leaving any shell nodes
unattached. In the results presented here, we considered the results obtained in the
previous section and requested kernel sizes bigger than the minimal values obtained.

Table 4. Results obtained for various desired numbers of hubs

The desired
number

of kernel
nodes

Subject Min Max Median αK
No. of

 connections

Name of problem: frb30-15-1 Vertices: 450 Edges: 8319

5
cardinality of shell 89 89 89

1.00 901 degree of kernel nodes in shell subgraphs 89 89 89
degree of kernel nodes in kernel subgraph 5 5 5

10
cardinality of shell 44 44 44

1.00 926 degree of kernel nodes in shell subgraphs 44 44 44
degree of kernel nodes in kernel subgraph 10 10 10

50
cardinality of shell 8 8 8

0.92 1975 degree of kernel nodes in shell subgraphs 8 8 8
degree of kernel nodes in kernel subgraph 44 50 46

100
cardinality of shell 3 4 3

0.89 5232 degree of kernel nodes in shell subgraphs 3 4 3
degree of kernel nodes in kernel subgraph 89 96 92
Name of problem: frb100-40 Vertices: 4000 Edges: 7 425 226

5
cardinality of shell 799 799 799

1.00 8001 degree of kernel nodes in shell subgraphs 799 799 799
degree of kernel nodes in kernel subgraph 5 5 5

B. MAŻBIC-KULMA et al. 104

The desired
number

of kernel
nodes

Subject Min Max Median αK
No. of

 connections

10
cardinality of shell 399 399 399

0.90 8024 degree of kernel nodes in shell subgraphs 399 399 399
degree of kernel nodes in kernel subgraph 9 10 10

50
cardinality of shell 79 79 79

1.00 9126 degree of kernel nodes in shell subgraphs 79 79 79
degree of kernel nodes in kernel subgraph 50 50 50

100
cardinality of shell 39 39 39

0.99 12 717 degree of kernel nodes in shell subgraphs 39 39 39
degree of kernel nodes in kernel subgraph 99 100 99

The results from Table 4 show that the method based on a given number of hubs is

more flexible, because it is possible to obtain the desired structure of the transformed
graph, while the previous method gives only one solution for each case. As it can be
seen, for larger numbers of hubs, the subgraph becomes not fully connected, but the
numbers of connections between hubs are very high (α is close to 1). However, it is
possible to obtain worse results for sparse graphs or for a larger number of hubs. It is
thus necessary to assess at least the connectivity of the kernel subgraph.

4.2.3. The problem with a non-fixed number of kernel nodes

The results obtained in this case are similar to those obtained in the case of mini-
mum kernel size (see Section 4.2.1, Table 3), although this is not a general rule. We
conducted simulations for different sets of data and the results obtained were, on occa-
sion, different.

5. Conclusions

It is well known that for problems of great complexity, where there are no effec-
tive algorithms to solve them, specialized evolutionary methods are very efficient and
give satisfactory results. The results of the series of experiments conducted are rather
positive. The parameter α introduced into the traditional notion of a clique gives rise
to a flexible tool that solves the kernel and shell structure problem using α-cliques.
Likewise, a traditional hub and spoke structure, which can be also treated as an in-
stance of kernel and shell, can be easily obtained using an evolutionary method. The
methods presented can be very useful for developing logistic-transportation systems.

The kernel and shell structure as a tool for improving the graph of transportation connections 105

References

[1] CHEN Z.-Q., WANG R.-L., OKAZAKI K., An Efficient Genetic Algorithm Based Approach for the Min-
imum Graph Bisection Problem, IJCSNS International Journal of Computer Science and Network
Security, 2008, 8 (6), 118–124.

[2] CORMEN T.H., LEISERSON CH.E., RIVEST R.L., STEIN C., Introduction to Algorithms, 3rd Ed., MIT,
Cambridge, Mass., USA, 2009.

[3] O’KELLY M.E., A quadratic integer program for the location of interacting hub facilities, European
Journal of Operational Research, 1987, 32, 392–404.

[4] O’KELLY M.E., BRYAN D., Interfacility interaction in models of hubs and spoke networks, Journal of
Regional Science, 2002, 42 (1), 145–165.

[5] MARCHIORI E., A Simple Heuristic Based Genetic Algorithm for the Maximum Clique Problem, Pro-
ceedings of the 1998 ACM Symposium on Applied Computing, 1998, ACM, 366–373.

[6] MAŻBIC-KULMA B., POTRZEBOWSKI H., STAŃCZAK J., SĘP K., Evolutionary approach to solve hub-
and-spoke problem using α-cliques, [in:] Evolutionary Computation and Global Optimization, Prace
Naukowe PW, Elektronika, Warsaw 2008, 165, 121–130.

[7] MAŻBIC-KULMA B., POTRZEBOWSKI H., STAŃCZAK J., SĘP K., Evolutionary approach to find kernel
and shell structure of a connection graph, TLM AGH, Cracow 2009, 37–50.

[8] MIN H., GOU Z., The location of hub-seaports in the global supply chain network using a cooperative
competition strategy, Integrated Supply Management, 2004, 1 (1), 51–63.

[9] POTRZEBOWSKI H., STAŃCZAK J., SĘP K., Evolutionary algorithm to find graph covering subsets us-
ing α-cliques, [in:] Evolutionary Computation and Global Optimization, J. Arabas (Ed.), Prace
Naukowe PW, Konferencje, Warsaw 2006, 351–358.

[10] POTRZEBOWSKI H., STAŃCZAK J., SĘP K., Heurystyczne i ewolucyjne metody znajdowania pokrycia
grafu, korzystające z pojęcia alfa-kliki i innych ograniczeń. Badania operacyjne i systemowe 2006.
Metody i techniki, Akademicka Oficyna Wydawnicza EXIT, Warsaw 2006.

[11] POTRZEBOWSKI H., STAŃCZAK J., SĘP K., Separable decomposition of graph using alpha-cliques,
[in:] Computer recognition systems 2. Advances in soft computing, M. Kurzyński, E. Puchała,
M. Woźniak, A. Żołnierek (Eds.), Springer-Verlag, Berlin 2007, 386–393.

[12] POTRZEBOWSKI H., STAŃCZAK J., SĘP K., Evolutionary approach to solve hub-and-spoke problem
using α-cliques, Evolutionary Computation and Global Optimization, Prace Naukowe PW, Warsaw
2008, 165, 121–130.

[13] STAŃCZAK J., POTRZEBOWSKI H., SĘP K., Evolutionary approach to obtain graph covering by densely
connected subgraphs, Control and Cybernetics, 2011, 41 (3), 80–107.

[14] TALBI E.-G., BESSIERE P., A parallel genetic algorithm for the graph partitioning problem, Proceed-
ings of the 5th International Conference on Supercomputing, ACM, New York 1991, 312–320.

[15] WILSON R.J., Introduction to Graph Theory, Longman, Harlow 1996.
[16] YU T.L., GOLDBERG D.E., YASSINE A., YASSINE C.A., Genetic algorithm design inspired by organi-

zational theory, Genetic and Evolutionary Computation Conference, Chicago, Illinois, USA, Spring-
er-Verlag, Lecture Notes in Computer Science, Heidelberg 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

